MINISTERUL EDUCAȚIEI, CERCETĂRII ȘI TINERETULUI

Cleopatra Gherbanovschi

Nicolae Gherbanovschi

FIZICĂ

manual pentru clasa a XII-a

F1

- filiera teoretică, profil real, specializarea matematică-informatică și stiinte ale naturii
 - filiera vocațională, profil militar MApN, specializarea matematică-informatică

Manualul a fost aprobat prin Ordinul Ministrului Educației, Cercetării și Tineretului nr. 1783/1 din 16.08.2007, în urma evaluării calitative și este realizat în conformitate cu programa analitică aprobată prin Ordin al Ministrului Educatiei si Cercetării nr. 5959 din 22.12.2006.

Manualul este valabil și pentru clasa a XII-a, ciclul superior al liceului, filiera tehnologică, ruta progresivă de calificare prin școala de arte și meserii + anul de completare.

Referenti stiintifici:

Conf. univ. dr. **Dima N. Vasile** Prof. gr. I **Mihail Curuțiu**

Descrierea CIP a Bibliotecii Naționale a României GHERBANOVSCHI, CLEOPATRA

Fizică: F1: manual pentru clasa a XII-a / Cleopatra Gherbanovschi, Nicolae Gherbanovschi. – București: Editura NICULESCU ABC, 2007 ISBN: 978-973-8950-04-7

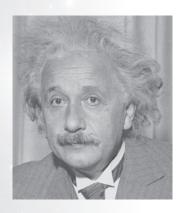
I. Gherbanovschi, Nicolae

53(075.35)

© Editura NICULESCU ABC, 2008

Adresa: B-dul Regiei 6D 060204 – București, România Tel: (+40)21-312.97.82 (+40)21-312.97.84 Tel/Fax: (+40)21-312.97.83 Call center: (+40)21-314.88.55

E-mail: club@niculescu.ro Internet: www.niculescu.ro


Redactor: Georgeta Vîrtic

Tipărit la TIPARG - Pitești

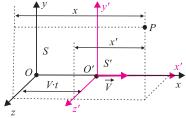
ISBN: 978-973-8950-04-7

1

Teoria relativității restrânse

- 1.1. Bazele experimentale ale teoriei relativității restrânse
 - 1.1.1. Relativitatea clasică
 - 1.1.2. Experiența lui Michelson și Morley
- 1.2. Postulatele teoriei relativității restrânse. Transformările Lorentz
- 1.3. Elemente de cinematică și dinamică relativistă
 - 1.3.1. Cinematica relativistă. Consecințele cinematice ale transformărilor Lorentz
 - 1.3.2. Compunerea vitezelor
 - 1.3.3. Principiul fundamental al dinamicii
 - 1.3.4. Relația masă-energie

Unele lecții pot fi asistate de calculator folosind site-ul: http://science.howstuffworks.com/relativity.htm


Teoria relativității restrânse

1.1. Bazele experimentale ale teoriei relativității restrânse

1.1.1. Relativitatea clasică

În teoria relativității clasice toate sistemele de referință inerțiale (SRI) sunt echivalente între ele în raport cu fenomenele mecanice. După cum știm din clasa IX-a, acest fapt se exprimă în cadrul teoriei respective prin aceea că ecuațiile mecanicii clasice sunt invariante, adică rămân neschimbate față de transformările Galilei (TG).

Reamintim că prin transformările Galilei se înțelege grupul de relații de transformare a mărimilor cinematice (coordonate, viteze, accelerații), care caracterizează mișcările particulelor, la trecerea dintr-un SRI (sistem de referință inerțial) în altul¹ în cadrul relativității clasice.

Fig. 1.1. Două sisteme de referință inerțiale *S* și *S'*.

Se consideră două SRI (fig. 1.1) notate cu S și S'. Orientarea axelor este aleasă, spre simplificare, astfel încât vectorul \vec{V} care definește mișcarea uniformă a lui S' în raport cu S să fie orientat în lungul axei Ox comune,

nește mișcarea uniformă a lui S' în raport cu S să fie orientat în lungul axei Ox comune, $\vec{V}(V, 0, 0)$; atunci TG se retranscriu în următoarele forme particulare (s-a ales ca origine a

timpului momentul când O' trece prin O):

$$r = \vec{r}' + \vec{V} \cdot t$$

$$t = t'$$

$$\begin{cases} x = x + Vt \\ y = y' \\ z = z' \\ t = t' \end{cases}$$
(1.1)

respectiv:

$$\vec{v} = \vec{v}' + \vec{V}$$

$$\begin{cases} v_x = v_x' + V \\ v_y = v_y' \\ v_z = v_z'; \end{cases}$$

 $^{^1}$ În manualul de clasa a IX-a, $\vec{\pmb v}$ era viteza absolută notată cu $\vec{\pmb v}_a, \ \vec{\pmb v}'-$ viteza relativă notată cu $\vec{\pmb v}_r-$ și $\vec V-$ viteza de transport notată cu $\vec{\pmb v}_t.$

$$\vec{a} = \vec{a}'$$
; $a_x = a_x'$, $a_y = a_y'$, $a_z = a_z'$.

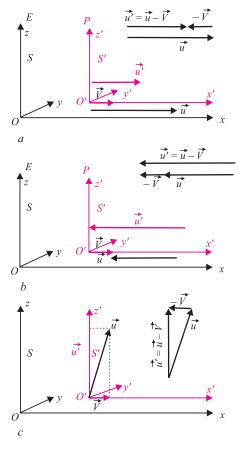
Odată cu apariția teoriei electromagnetismului, elaborată de J.C. Maxwell în anul 1863, s-a constatat că legile de bază ale fenomenelor electromagnetice nu sunt invariante față de transformările Galilei, fapt susținut prin următorul argument experimental.

Să considerăm două SRI notate cu S și S', cu axele paralele, S' mișcându-se față de S cu viteza \vec{V} (V, 0, 0); ca în figura 1.1. O sursă de lumină (în electromagnetism numită undă electromagnetică transversală), aflată în repaus în S, emite în vid un semnal luminos care se propagă cu viteza v = c în lungul axei Ox.

Viteza semnalului luminos față de S' ar trebui să fie calculată cu relația de transformare galileeană $v_x = v_x' + V$ având forma c' = c - V. Experiențele de tipul celor ale lui Michelson și Morley, din anul 1887, au arătat însă că viteza semnalului luminos față de S' este tot c, adică c' = c.

Pentru a înlătura, în termeni relativiști clasici, contradicția între electrodinamică și mecanică, la sfârșitul secolului XIX au fost concepute două teorii care presupuneau că:

- fenomenele electromagnetice au loc într-un mediu deosebit, numit eter universal, care umple tot spațiul inclusiv interiorul corpurilor;
- la descrierea fenomenelor electromagnetice trebuie considerat, ca sistem de referință, eterul universal.
- 1. Prima teorie, cea a lui Heinrich Hertz, afirma că eterul universal este total antrenat de corpurile în mișcare astfel că viteza de propagare a luminii în vid este aceeași față de orice corp, indiferent de sensul de mișcare uniformă a acestuia. Teoria lui Hertz rămânea însă în cadrul concepției clasice newtoniene despre spațiu și timp. Ca atare, Hertz a trebuit să rescrie legile câmpului electromagnetic într-o astfel de formă încât, aplicând transformările lui Galilei, formularea lor să fie aceeași în toate sistemele de referință inerțiale.
- 2. A doua teorie, formulată de Lorentz în anul 1904, presupune că eterul este imobil, constituind un sistem de referință deosebit, preferențial, în care legile electromagnetismului au forma dată de Maxwell (în anul 1863). Astfel, numai în acest sistem viteza luminii în vid are valoarea:


$$c \, = \, \frac{1}{\sqrt{\epsilon_0 \mu_0}} \, = \, 3 {\cdot} 10^8 \, \text{m/s},$$

aceeași în toate direcțiile.

Fizica experimentală trebuia să decidă care dintre aceste două teorii era valabilă.

În continuare se va descrie un experiment cu un rol crucial în elaborarea teoriei relativității einsteiniene.

1.1.2. Experimentul Michelson şi Morley

Fig. 1.2. Cele trei cazuri de compunere a vitezelor pentru înțelegerea experienței lui Michelson și Morley.

Pentru început este necesar să efectuăm câteva calcule referitoare la raționamentele pe care s-a bazat experiența fizicianului american A. A. Michelsonn (laureatul Premiului nobel pentru fizică — 1907), realizată în anul 1881 și reluată în 1887 împreună cu E. W. Morley.

Dacă viteza luminii (\vec{u}) are o anumită valoare față de sistemul de referință absolut – eterul –, atunci, față de Pământ, sistem considerat că se deplasează cu viteza de translație \vec{V} față de "eter", viteza luminii (\vec{u}') va suferi mici variații care depind de sensul de deplasare a luminii și a Pământului în spațiul absolut, conform relației de compunere a vitezelor în mecanica clasică¹: $\vec{u} = \vec{u}' + \vec{V}$. Să considerăm sistemul de referință S legat de eter și sistemul S', Pământul, care se deplasează cu viteza \vec{V} față de S pe direcția Ox (fig. 1.2, a), în trei cazuri:

În cazul 1, lumina care se propagă pe direcția Ox, de la O spre x, are în sistemul S viteza \vec{u} de modul c, iar în sistemul S' viteza $\vec{u}' = \vec{u} - \vec{V}$, de modul u' = c - V.

În cazul **2**, lumina se deplasează pe direcția Ox, de la x la O, viteza de deplasare în sistemul O' este $\vec{u}' = \vec{u} - \vec{V}$ și în modul u' = c + V (fig. 1.2, b).

În cazul 3, lumina care se propagă în sistemul S' pe direcția O'z' are viteza $\vec{u}' = \vec{u} - \vec{V}$ și în modul (fig. 1.2, c):

$$u' = \sqrt{c^2 - V^2} = c\sqrt{1 - \frac{V^2}{c^2}} .$$

Pentru a pune în evidență aceste viteze diferite de propagare a luminii pe direcții diferite față de Pământ, pentru a dovedi mișcarea Pământului față de mediul ipotetic aflat în repaus – suport material al propagării luminii – numit eter, Michelson și Morley au folosit un interferometru. Schema instalației experi-

¹ S-a folosit pentru scrierea relației de compunere a vitezelor a lui Galilei, $\vec{v} = \vec{v}' + \vec{V}$ relația scrisă cu simbolurile folosite de Michelson, adică \vec{u} pentru \vec{v} și \vec{u}' pentru \vec{v}' .

mentale este redată în figura 1.3, a. Experiența se face pe etape, în felul următor: se așază interferometrul astfel încât brațul 1 să aibă orientarea în direcția și sensul mișcării orbitale a Pământului (fig. 1.3, b). Pe o porțiune mică de arc mișcarea se poate considera rectilinie și uniformă. Lumina parcurge brațul 1 la ducere cu viteza c - V și la întoarcere cu viteza c + V, într-un timp total (cazurile $\mathbf{1}$ și $\mathbf{2}$):

$$t_1 = \frac{L}{c - V} + \frac{L}{c + V} = \frac{2L}{c \left(1 - \frac{V^2}{c^2}\right)}.$$

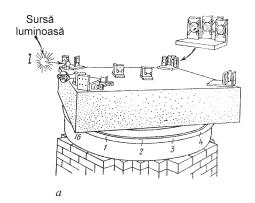
Lumina parcurge brațul 2, având aceeași lungime L, dispus perpendi-

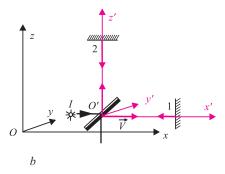
cular pe brațul 1, cu viteza $c\sqrt{1-\frac{V^2}{c^2}}$,

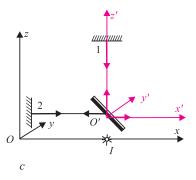
aceeași și la ducere și la întoarcere, într-un timp total (cazul 3):

$$t_2 = \frac{2L}{c\sqrt{1 - \frac{V^2}{c^2}}}.$$

Cei doi timpi nu sunt egali $(t_1 > t_2)$ și depind de V. Întrucât c >> V, relațiile de mai sus se pot aproxima:


$$t_1 = \frac{2L}{c} (1 - \beta^2)^{-1} = \frac{2L}{c} (1 + \beta^2);$$


$$t_2 = \frac{2L}{c} (1 - \beta^2)^{-\frac{1}{2}} = \frac{2L}{c} \left(1 + \frac{1}{2} \beta^2 \right),$$
unde $\beta = \frac{V}{c}$.


Diferența între acești doi timpi este:

$$\Delta t = t_1 - t_2 = \frac{L}{c} \beta^2.$$

Acestei diferențe de timp îi corespunde o anumită diferență de fază și, ca urmare, apariția unei figuri de interferență. În câmpul lunetei de observare apărea

Fig. 1.3. Experiența lui Michelson și Morley. *a.* Schema instalației experimentale. *b. c.* Schemele de principiu pentru cele două etape

ale experimentului.

un ansamblu de franje alternativ luminate și întunecate. Biografii lui A. A. Michelson arată că pentru a feri interferometrul, foarte sensibil, de vibrații mecanice sau de alte influențe și pentru a-l roti ușor, acesta era montat pe o placă de marmură cu grosimea de 35,6 cm și aria de 1,5 m², așezat pe un inel din lemn de stejar. Întregul ansamblu plutea pe mercur într-o cadă construită din cărămizi (fig. 1.3, a). În timpul experiențelor a fost oprită circulația vehiculelor prin oraș. Figura de interferență vibra chiar și la prezența numai a unei singure persoane aflate în apropierea instalației, din cauza variației de temperatură¹.

Rotirea aparatului cu 90° (în sensul trigonometric – fig. 1.3, b, c) era necesară și prin faptul că brațele interferometrului nu puteau fi făcute absolut egale. Lumina realiza mai multe reflexii pe cele două direcții rectangulare, astfel că lungimea drumului parcurs de ea, L, era de 11 m pentru fiecare dintre cele două brațe ale interferometrului, astfel încât prin rotirea cu 90° (în sens trigonometric) și lungirea brațelor, diferența mică dintre lungimea brațelor devenea nerelevantă și experimentatorului nu-i rămânea decât să măsoare deplasarea figurii de interferență. Rotind aparatul, sensul razelor de lumină, raze ce reprezintă direcțiile de propagare a undelor, se schimbă față de reperul "eter". În acest caz trebuie

să considerăm un $\Delta t' = -\Delta t$, adică $\Delta t' = -\frac{L}{c}\beta^2$. Variația diferenței de timp intervenită în procesul rotirii ar fi:

$$\Delta \tau = \Delta t - \Delta t' = \frac{2L}{c} \beta^2,$$

ceea ce echivalează cu o deplasare a sistemului de franje. Pentru un interval de timp egal cu o perioadă T a vibrației luminoase, deplasarea figurii de interferență ar fi fost egală cu lățimea unei franje. Înseamnă că în intervalul de timp $\Delta \tau$ trebuie ca figura de interferență să se deplaseze cu x din lățimea unei franje. Din calculul de regulă de trei simplă, se obține:

$$x = \frac{\Delta \tau}{T} = \frac{2L}{\lambda} \beta^2$$
, unde $\beta = \frac{V}{c}$.

Conform calculelor teoretice, deplasarea figurii de interferență trebuia să fie egală cu 0,4 din lățimea unei franje. În realitate deplasarea nu a fost observată, deși precizia măsurătorilor era de o sutime de franjă.

Experiențele extrem de precise, repetate de un mare număr de ori și efectuate de Michelson și Morley, au arătat că figura de interferență nu se modifică dacă se rotește aparatul, ceea ce arată că timpul în care lumina parcurge cele două brațe nu depinde de poziția aparatului. Înseamnă că viteza luminii față de sistemul S' nu depinde de direcția și de sensul ei de propagare în acest sistem, ceea ce contrazice concluzia găsită pe baza relației de compunere galileeană din mecanica clasică.

¹ D. M. Livingstone, *The Master of Light: a Biography of A. A. Michelson, Scribuer's*, N. Y., 1937.

A. Einstein a arătat că rezultatul experienței trebuie interpretat ca o dovadă a falsității ipotezei eterului: nu există o mișcare absolută a corpurilor, iar viteza luminii în vid, în orice SRI, este o constantă. Rezultatul experienței a putut fi explicat folosindu-se consecințele *transformărilor Lorentz*. Aceste concluzii au constituit premisele indirecte, deoarece A. Einstein, în lucrarea sa din 1905, nu amintește de această experiență și se pare că nu o cunoștea la acea dată, deci nu i-a folosit concluziile pentru formularea celor două principii ale *teoriei relativității restrânse* (TRR).

Această teorie este valabilă numai pentru sistemele de referință inerțiale și, datorită acestei limitări, ea are denumirea de mai sus, TRR.

1.2. Postulatele teoriei relativității restrânse. Transformările Lorentz

Teoria relativității restrânse (TRR) are la bază două principii (sau postulate), enunțate de A. Einstein în anul 1905 în lucrarea sa intitulată "Asupra electrodinamicii corpurilor în mișcare".

Primul postulat este o generalizare a principiului relativității mecanice clasice si afirmă că:

1) Fenomenele fizice se desfășoară identic în toate sistemele de referință inerțiale, în condiții inițiale identice.

Deci, ecuațiile matematice care exprimă legile naturii sunt invariante (neschimbate), în raport cu transformările de coordonate și de timp de la un SRI la altul.

Cel de al doilea postulat are următorul enunț:

2) Viteza maximă de transmitere a interacțiunilor este egală cu viteza luminii în vid și este invariantă în raport cu orice sistem de referință inerțial și cu orice direcție de măsurare.

Principiul invarianței vitezei maxime de interacțiune consfințește caracterul de *contiguitate*, adică propagarea din aproape în aproape al transmiterii interacțiunilor fizice, eliminând ipoteza interacțiunilor instantanee la distanță împreună cu confuziile pe care această ipoteză le generează.

Pe baza celor două principii – postulate ale teoriei relativității restrânse – se pot obține relațiile de transformare ale coordonatelor și timpului pentru trecerea de la un SRI la altul, adică așa-numitele *transformări Lorentz*¹.

Alegând mişcarea pe direcția axei Ox, coordonatele y și z, perpendiculare pe această direcție, nu se modifică:

$$y = y'$$
 şi $z = z'$.

¹ (1853–1928) – laureat al Premiul Nobel pentru fizică, 1902, pentru *Teoria electro-nică a substanței*.

Sistemul de referință S' se deplasează cu distanța Vt, astfel încât, între coordonatele x și x' există o relație liniară de forma:

$$x' = \alpha(x - Vt)$$
;

analog:

$$x = \alpha'(x' + Vt'). \tag{1.2}$$

Întrucât cele două sisteme sunt echivalente, $\alpha = \alpha'$. Relațiile 1.2 trebuie să fie valabile și pentru punctele din planele O'y'z' și Oyz pentru care x' = 0, respectiv x = 0 și atunci rezultă x = Vt și, respectiv x' = -Vt'.

Pentru a-l determina pe α , folosim al doilea postulat a lui Einstein, după care viteza luminii c este aceeași în ambele sisteme. Punctul în care ajunge lumina la un moment dat, în cele două sisteme are coordonate x = ct și, respectiv x' = ct'.

Înlocuind în relațiile (1.2) rezultă:

$$ct' = \alpha(ct - Vt); \quad ct = \alpha(ct' + Vt').$$

Prin înmulțirea celor două relații se obține:

$$c^2t't = \alpha^2(ct - Vt)(ct' + Vt') \Rightarrow \alpha^2 = \frac{c^2}{c^2 - V^2},$$

deci:

$$\alpha = \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}};$$
(1.3)

termenul $\sqrt{1 - \frac{V^2}{c^2}}$ este numit *radicalul Lorentz*.

Astfel, coordonatele în cele două sisteme au forma:

$$x' = \frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}}$$
 şi $x = \frac{x' + Vt'}{\sqrt{1 - \frac{V^2}{c^2}}}$

Combinând aceste două ecuații, obținem ecuația de transformare a timpului.

$$x = \frac{\frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}} + Vt'}{\sqrt{1 - \frac{V^2}{c^2}}} = \frac{x - Vt + Vt'\sqrt{1 - \frac{V^2}{c^2}}}{1 - \frac{V^2}{c^2}},$$

sau:
$$x\left(1-\frac{V^2}{c^2}\right) = x - Vt + Vt'\sqrt{1-\frac{V^2}{c^2}}$$
, de unde rezultă:

$$t' = \frac{t - \frac{V}{c^2}x}{\sqrt{1 - \frac{V^2}{c^2}}} \quad \text{si} \quad t = \frac{t' + \frac{V}{c^2}x'}{\sqrt{1 - \frac{V^2}{c^2}}}.$$

Sintetizând datele obținute, putem scrie:

$$\begin{cases} x = \frac{x' + Vt'}{\sqrt{1 - \frac{V^2}{c^2}}} \\ y = y' \\ z = z' \\ t = \frac{t' + \frac{V}{c^2}x'}{\sqrt{1 - \frac{V^2}{c^2}}} \end{cases}$$

$$\begin{cases} x' = \frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}} \\ y' = y \\ z' = z \end{cases}$$

$$t' = \frac{t - \frac{V}{c^2}x}{\sqrt{1 - \frac{V^2}{c^2}}}$$

$$(1.4)$$

și reciproc:

Aceste relații sunt cunoscute sub denumirea de *transformările Lorentz* directe – cele care dau pe x, y, z, t – și inverse – cele care dau pe x', y', z', t'. În aceste relații V este viteza de transport a referențialului S' față de S. De observat că

atunci când
$$V/c << 1$$
 în transformările Lorentz radicalul $\sqrt{1-\frac{V^2}{c^2}} \approx 1$ și $t \approx t'$

și transformările respective se reduc la transformările Galilei (1.1). Aceasta arată că relativitatea restrânsă conține relativitatea clasică, aceasta din urmă fiind un caz particular, corespunzător vitezelor de transport V mici în comparație cu viteza luminii în vid, c. Acest ultim enunț reprezintă teorema corespondenței. Transformările Lorentz formează baza TRR, fiind confirmate de nenumărate experiențe. Consecințele acestei transformări sunt deosebit de interesante, după cum vom vedea în continuare.

1.3. Elemente de cinematică și dinamică relativistă

1.3.1. Cinematica relativistă. Consecințele cinematice ale transformărilor Lorentz

A. Contracția relativistă a lungimilor

În mecanica clasică, așa cum rezultă din TG, se consideră că dimensiunile corpurilor nu se schimbă la trecerea de la un SRI la altul (invarianța intervalului spatial).

De asemenea, în mecanica clasică, intervalul temporal se consideră invariant la trecerea de la un SRI la altul.

În teoria relativității creată de Einstein spațiul (și timpul) nu mai pot fi considerate mărimi absolute.

Dimensiunile longitudinale ale corpurilor (în direcția mișcării) se modifică prin trecerea de la un SRI la altul.

Într-adevăr, să considerăm un corp de formă liniară (o riglă, de exemplu) aflată pe axa Ox în repaus în S, având lungimea l_0 în acest sistem numit sistem de referință propriu (SRP):

$$l_0 = x_2(t) - x_1(t),$$

 $l_0 = x_2(t) - x_1(t),$ adică diferența absciselor capetelor sale. Să măsură a l

Să măsurăm lungimea riglei și în sistemul de referință inerțial -S' – care are, față de SRP al riglei, o mișcare de translație uniformă de-a lungul axei Ox cu viteza V. Fie x'_1 și x'_2 abscisele riglei măsurate la același moment $t'_1 = t'_2$. Aceste momente sunt măsurate cu un ceas Ω' solidar cu S'. Conform relațiilor (1.4) se

obține, cu notația $\beta = \frac{v}{c}$,

$$l_0 = x_2 - x_1 = \frac{x_2' + Vt_2'}{\sqrt{1 - \beta^2}} - \frac{x_1' + Vt_1'}{\sqrt{1 - \beta^2}} = \frac{x_2' - x_1'}{\sqrt{1 - \beta^2}} = \frac{l'}{\sqrt{1 - \beta^2}}.$$

De aici rezultă:

$$l' = l_0 \sqrt{1 - \beta^2} ,$$

adică lungimea măsurată în S' este mai mică decât lungimea proprie l_0 .

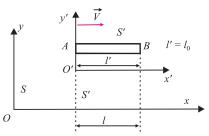


Fig. 1.4. Contractarea lungimilor. Rigla este solidară cu S'.

Evident, rigla a rămas identică cu ea însăși, doar rezultatul măsurării lungimii diferă de la un SRI la altul.

Problemă rezolvată

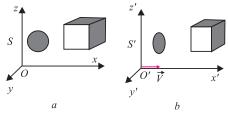
Fie o riglă în repaus într-un SRI-S', aflat în translație uniformă față de un SRI-S (fig. 1.4). Să se exprime lungimea riglei $l = x_2(t) - x_1(t)$ în referențialul S în funcție de lungimea $l' = l_0$ a riglei în sistemul S'.

Din
$$x' = \frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}}$$
 (relațiile 1.4), rezultă: $x = x'\sqrt{1 - \frac{V^2}{c^2}} + Vt$.

Deci:
$$l = x'_2 \sqrt{1 - \frac{V^2}{c^2}} + Vt - x'_1 \sqrt{1 - \frac{V^2}{c^2}} - Vt$$
, sau:

$$l = (x_2' - x_1')\sqrt{1 - \frac{V^2}{c^2}} = l_0\sqrt{1 - \frac{V^2}{c^2}} < l_0.$$

Se obține l = l', adică aceeași contracție ca în cazul analizat în paragraful teoretic anterior.


Dimensiunile transversale ale corpurilor nu se modifică, deoarece y' = y și z' = z. Din acest motiv volumul corpului se contractă doar în direcția mișcării. Într-adevăr:

$$\mathcal{Y}_0 = xyz;$$

$$\mathcal{Y}' = x'y'z' = x\sqrt{1 - \frac{V^2}{c^2}} yz = \mathcal{Y}_0\sqrt{1 - \beta^2}, \text{ unde } \beta = \frac{V}{c}.$$

O sferă privită din sistemul de referință față de care ea se mişcă apare turtită în direcția mişcării, iar un cub se transformă într-un paralipiped (fig. 1.5, a, b).

Modificările care apar în figura 1.5 a, b nu reprezintă ceea ce vede un observator, ci forma reală a obiectelor. Numai localizarea tuturor punctelor obiectului măsurat, în același timp, poate da imaginea

Fig. 1.5. Sfera se turtește iar cubul devine un paralelipiped în sistemul S'.

sa adevărată. Când vedem un obiect în mişcare rapidă, noi înregistrăm de fapt cuantele de lumină emise de obiect când ele sosesc simultan pe retină. Înseamnă că fotonii nu au fost emişi simultan de toate punctele corpului şi astfel ochiul obține o imagine deformată a corpului. Acesta nu-şi schimbă forma vizibilă, apare doar rotit.

În cazul în care corpul s-ar mişca cu V = c, dimensiunea sa longitudinală s-ar reduce la zero şi corpul ar degenera într-un plan transversal față de Ox.

Este vorba aici de așa-numita "contracție a lungimilor". Concepția spațiului absolut reprezentat prin egalitatea $l'=l_0$ trebuie înlocuită în teoria relativistă cu

concepția spațiului relativ reprezentată prin relația
$$l'=l_0\sqrt{1-\frac{V^2}{c^2}}$$
 .

Nici o dimensiune sau distanță nu poate fi cunoscută în mărime absolută, ci numai în mărime relativă.

Când
$$V \to 0$$
, $\sqrt{1 - \frac{V^2}{c^2}} \to 1$ și se regăsește rezultatul clasic $l' = l_0$. Pentru

V > c, radicalul devine imaginar și noțiunea de lungime își pierde sensul.

B. Dilatarea relativistă a duratelor (a timpului)

Considerăm într-un punct de pe semiaxa abscisă Ox a lui S un eveniment temporar care durează un timp:

$$\tau_0 = t_2(x) - t_1(x).$$

Acest τ_0 (care se mai numește timp propriu) poate fi timpul de viață al unei particule elementare, timpul unei ciocniri, două indicații succesive ale unui ceas, timpul de înjumătățire al unui element radioactiv etc.

Durata aceluiași eveniment măsurată în S', SRI aflat în mișcare de translație față de S, mobil va fi dată de diferența momentelor respective în S' luate pentru aceeași abscisă x:

$$\tau' = t'_2(x) - t'_1(x).$$
Din $t' = \frac{t - \frac{Vx}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$ rezultă: $\tau' = \frac{t_2 - \frac{Vx}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}} - \frac{t_1 - \frac{Vx}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}} = \frac{t_2 - t_1}{\sqrt{1 - \frac{V^2}{c^2}}} = \frac{\tau_0}{\sqrt{1 - \frac{V^2}{c^2}}} > \tau_0.$

Durata unui eveniment într-un punct aflat în mişcare de translație față de un SRI fix este mai mare decât durata aceluiași proces măsurată în sistemul de referință față de care acel punct este în repaus, adică $\tau' > \tau_0$.

În mod reversibil: durata unui eveniment indicată de un ceasornic este minimă în sistemul de referință propriu, față de care ceasul este în repaus, $\tau_0 < \tau$.

Aplicatie (Experimetul Rossi)

Realitatea obiectivă, dovedită experimental, a dependenței intervalului de timp de sistemul de referință, ca și multe alte efecte relativiste nu se explică în acord cu reprezentările noastre intuitive bazate pe observația cotidiană a fenomenelor care se petrec în regim nerelativist (V << c). Un exemplu este și cazul prezenței la nivelul solului (sau al mării) a particulelor elementare, miuonii, care apar în atmosfera înaltă la altitudini de aproximativ 10 km (datorită razelor cosmice care pătrund în atmosfera Pământului) și care au un *timp de viață propriu* – adică timpul măsurat în sistemul de referință solidar legat de particulă – extrem de scurt, $\tau_0 = 2.2 \times 10^{-6} \, \text{s}$, după care se dezintegrează. În acest *timp propriu*, cu viteza pe care o au, $V = 2.994 \cdot 10^8 \, \text{m/s}$, miuonii, după un calcul nerelativist, ar putea parcurge o distanță de numai $V\tau_0 = 658.7 \, \text{m}$, fără a putea ajunge la nivelul solului. Pentru calculul relativist al distanței trebuie să se ia în considerație însă intervalul de timp τ dintre apariția și dispariția miuonului, măsurat față de Pământ, deoarece observația se face în raport cu Pământul. Acest timp este – după cum știm, mai mare decât timpul de viață propriu τ_0 , adică:

$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{V^2}{c^2}}} = \frac{2.2 \cdot 10^{-6}}{\sqrt{1 - \left(\frac{2.994}{2.9979}\right)^2}} = 43.14 \cdot 10^{-6} \text{ s.}$$

În timpul τ miuonul parcurge față de Pământ o distanță $D = c\tau = 12,933$ km, putând deci să fie reperat chiar și la nivelul mării.

Dacă $V \ll c$ se obține $\tau = \tau_0$, ca în mecanica clasică.

Pentru $V \rightarrow c$ dimensiunile longitudinale ale corpurilor tind către zero, iar intervalul temporal tinde către infinit.

Pentru V = c corpul se reduce la un *plan* transversal pe direcția mișcării iar durata unui eveniment devine *infinită*; secunda durează *o eternitate!*

Pentru V > c transformările Lorentz devin imaginare și își pierd sensul fizic, astfel că trebuie să admitem că viteza luminii în vid nu poate fi atinsă de corpuri.

Așadar, orice eveniment se desfășoară mai lent pentru un observator în mișcare față de locul unde s-a produs evenimentul (fenomenul), decât pentru un observator aflat în repaus față de acel loc.

Simultaneitatea a două evenimente este relativă, aceasta fiind dependentă de sistemul de referință față de care descriem mișcarea.

Două evenimente simultane în S nu sunt simultane în S' și invers. Fie două evenimente simultane în S în punctele x_1 și x_2 la momentul t. În sistemul mobil S', în conformitate cu relațiile (1.4), măsurând cu ceasornicul Ω' solidar cu S', vom avea timpii:

$$t_1'(x_1) = \frac{t - \frac{Vx_1}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}, \ t_2'(x_2) = \frac{t - \frac{Vx_2}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}.$$

Se observă că, privite din referențialul S', evenimentele nu mai apar simultane, decât în cazul particular când $x_1 = x_2$, adică în cazul când cele două evenimente coincid.

În teoria relativității există și o mulțime privilegiată de mărimi care au proprietatea de a rămâne *invariante* la trecerea de la un referențial la altul. Rolul principal al teoriei relativității constă tocmai în stabilirea acestor *invarianți* relativiști. Dintre aceștia menționăm: constantele universale, mărimile măsurate față de referențialul propriu, sarcina electrică etc.

1.3.2. Compunerea vitezelor

Să exprimăm legile relativiste de transformare a vitezelor corpurilor sau particulelor dintr-un sistem de referință inerțial în alt sistem de referință inerțial.

Pornim de la transformările Lorentz deduse mai înainte (relațiile 1.4):

$$x = \frac{x' + Vt'}{\sqrt{1 - \frac{V^2}{c^2}}}; \quad y = y'; \quad z = z'; \quad t = \frac{t' + \frac{Vx'}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}.$$

Din relațiile de mai sus, rezultă:

$$dx = \frac{dx' + Vdt'}{\sqrt{1 - \frac{V^2}{c^2}}}; dy = dy'; dz = dz'; dt = \frac{dt' + \frac{Vdx'}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}.$$

Împărțim primele trei ecuații la ultima:

$$\frac{dx}{dt} = \frac{dx' + Vdt'}{dt' + \frac{Vdx'}{c^2}}; \quad \frac{dy}{dt} = \frac{dy'\sqrt{1 - \frac{V^2}{c^2}}}{dt' + \frac{Vdx'}{c^2}}; \quad \frac{dz}{dt} = \frac{dz'\sqrt{1 - \frac{V^2}{c^2}}}{dt' + \frac{Vdx'}{c^2}},$$

sau:

$$\frac{dx}{dt} = \frac{\frac{dx'}{dt'} + V}{1 + \frac{V}{c^2} \frac{dx'}{dt'}}; \quad \frac{dy}{dt} = \frac{\frac{dy'}{dt'} \sqrt{1 - \frac{V^2}{c^2}}}{1 + \frac{V}{c^2} \frac{dx'}{dt'}}; \quad \frac{dz}{dt} = \frac{\frac{dz'}{dt'} \sqrt{1 - \frac{V^2}{c^2}}}{1 + \frac{V}{c^2} \frac{dx'}{dt'}}.$$

Se obțin astfel formulele de compunere a vitezelor în teoria relativității restrânse:

$$\mathbf{v}_{x} = \frac{\mathbf{v}'_{x} + V}{1 + \frac{V}{c^{2}}\mathbf{v}'_{x}}; \ \mathbf{v}_{y} = \frac{\mathbf{v}'_{y}\sqrt{1 - \frac{V^{2}}{c^{2}}}}{1 + \frac{V}{c^{2}}\mathbf{v}'_{x}}; \ \mathbf{v}_{z} = \frac{\mathbf{v}'_{z}\sqrt{1 - \frac{V^{2}}{c^{2}}}}{1 + \frac{V}{c^{2}}\mathbf{v}'_{x}}.$$

Formulele inverse se obțin din ecuațiile de mai sus schimbând accentele şi schimbând pe V în -V; deci:

$$\mathbf{v}'_{x} = \frac{\mathbf{v}_{x} - V}{1 - \frac{V}{c^{2}} \mathbf{v}_{x}}; \ \mathbf{v}'_{y} = \frac{\mathbf{v}_{y} \sqrt{1 - \frac{V^{2}}{c^{2}}}}{1 - \frac{V}{c^{2}} \mathbf{v}_{x}}; \ \mathbf{v}'_{z} = \frac{\mathbf{v}_{z} \sqrt{1 - \frac{V^{2}}{c^{2}}}}{1 - \frac{V}{c^{2}} \mathbf{v}_{x}}.$$
(1.5)

Față de formulele clasice de compunere deduse din TG, adică:

$$\boldsymbol{v}_{x} = \boldsymbol{v}_{x}' + \tilde{V}; \ \boldsymbol{v}_{y} = \boldsymbol{v}_{y}'; \ \boldsymbol{v}_{z} = \boldsymbol{v}_{z}',$$

se observă că acum apare numitorul $\left(1 + \frac{V \boldsymbol{v}_x'}{c^2}\right)$ la \boldsymbol{v}_x , \boldsymbol{v}_y și \boldsymbol{v}_z și, respectiv radicalul Lorentz $\sqrt{1 - \frac{V^2}{c^2}}$ la numărătorul lui \boldsymbol{v}_y și al lui \boldsymbol{v}_z .

Dacă V << c atunci $\frac{V^2}{c^2} << 1$ se neglijează și din transformările Lorentz, se obțin transformările Galilei din fizica clasică.

Expresiile relativiste de compunere a vitezelor reconfirmă principiul după care viteza luminii în vid, c, este viteză maximă și nu poate fi atinsă de particule și corpuri (cu atât mai mult nu poate fi depășită). Într-adevăr, dacă V = c, atunci:

$$v_x = \frac{v_x' + c}{1 + \frac{cv_x'}{c^2}} = c$$
, sau invers: $v_x' = \frac{v_x - c}{1 - \frac{cv_x}{c^2}} = \frac{v_x - c}{c - v_x}c = -c$.

Alt exemplu:
$$\mathbf{v}'_x = c$$
, $V = V$, $\mathbf{v}_x = \frac{c+V}{1+\frac{Vc}{c^2}} = \frac{c+V}{c+V}c = c$.

După formulele clasice ale lui Galilei ar trebui să se obțină în ultimul caz:

$$\boldsymbol{v}_{x} = c + V > c.$$

 $v_x = c + V > c$. Dacă și V = c, $v_x = c + c = 2c$, în contradicție cu experiențele lui Michelson și Morley.

Problemă rezolvată

O navă cosmică, îndepărtându-se de Pământ cu viteza de 0,9c, lansează un vehicul cosmic pe aceeași direcție cu mișcarea ei. Viteza vehiculului este 0.9c față de navă $(c = 2.99792 \cdot 10^8 \text{ m/s})$. Care este viteza vehiculului cosmic în raport cu Pământul?

Fie S sistemul de referință inerțial legat de Pământ și S' referențialul legat de navă. În acest caz legea de compunere relativistă a vitezelor va avea forma:

$$v = \frac{v' + V}{1 + \frac{Vv'}{c^2}},$$

unde v este viteza vehiculului față de Pământ, v' - viteza vehiculului față de navă, iar V – viteza navei relativă la Pământ.

Prin calcul numeric se obține:
$$v = \frac{0.9c + 0.9c}{1 + \frac{(0.9c)(0.9c)}{c^2}} = 0.994c = 297993 \text{ km/s}.$$

(Din formula de compunere nerelativistă a vitezelor (transformările Galilei) rezultă o viteză superluminică, relativă la Pământ, a vehicului cosmic, de 1,8c. Imposibil!).

1.3.3. Principiul fundamental al dinamicii

Teoria relativității einsteiniene implică, prin noua concepție despre spațiu și timp, o schimbare fundamentală și în dinamică.

În cazul mecanicii newtoniene, legea dinamicii:

$$m\vec{a} = m\frac{d\vec{v}}{dt} = \vec{F} ,$$

are aceeași formă în orice sistem inertial. Din această relatie rezultă și faptul că dacă se acționează cu o forță constantă asupra unui corp timp îndelungat, viteza

corpului poate crește oricât de mult.

Dar, în postulatul doi al lui Einstein se afirmă că viteza limită a corpurilor sau a câmpurilor electromagnetice, este viteza de propagare a luminii în vid, adică $c = 299792458 \text{ m/s} \approx 3\cdot10^8 \text{ m/s}$. Aceasta înseamnă că legea dinamicii newtoniene nu mai este valabilă pentru viteze mari ale corpurilor.

Einstein a arătat că la baza dinamicii relativiste trebuie pusă legea fundamentală a mecanicii enunțată de Newton, scrisă sub forma:

$$\frac{d\vec{p}}{dt} = \vec{F}$$
.

Ceea ce se modifică prin scrierea acestei relații este masa.

În relația de definiție a impulsului unui corp, $\vec{p} = m\vec{v}$, factorul masă, m, nu mai este un factor de proporționalitate constant între impuls și viteză; masa devine acum un factor care depinde de viteza corpului.

Să stabilim relația de dependență a masei inerte a corpurilor în raport cu viteza de deplasare a acestora, folosind formulele relativiste de compunere a vitezelor și legea conservării impulsului.

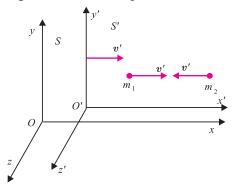


Fig. 1.6. Ciocnirea inelastică a două corpuri în raport cu sistemele de referință S și S'.

Considerăm o ciocnire inelastică a două corpuri ca în figura 1.6. Masa corpurilor este aceeași când corpurile se află în repaus față de referențialul S. În referențialul S' corpurile se deplasează, unul spre celălalt cu vitezele v', iar după ciocnire rămân în repaus față de S'. Sistemul S' se deplasează cu viteza v=v' față de S. După ciocnire cele două corpuri se vor deplasa, evident, cu viteza v' față de S. În procesul ciocnirii masa $m=m_1+m_2$ se conservă.

Pentru observatorul din S legea con-

servării impulsului se scrie sub forma:

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2) v',$$

unde, conform formulelor de compunere a vitezelor (1.5), avem:

$$v_1 = \frac{v' + v'}{1 + v'^2/c^2} = \frac{2v'}{1 + v'^2/c^2}$$
 și $v_2 = \frac{v' - v'}{1 + v'^2/c^2} = 0$,

deci:
$$m_1 \frac{2v'}{1 + v'^2/c^2} = (m_1 + m_2)v'$$
, de unde: $m_1 \left(\frac{2}{1 + v'^2/c^2} - 1\right) = m_2$.

În referențialul aflat în repaus, masa celor două corpuri este aceeași, m_0 , așa cum s-a mai menționat; corpul cu masa m_2 , aflându-se în repaus față de S, deoarece viteza sa față de acest sistem este $v_2 = 0$, din relația de mai sus, avem:

$$m_0 = m_1 \frac{1 - {\boldsymbol{v'}}^2/c^2}{1 + {\boldsymbol{v'}}^2/c^2}$$

Folosind egalitatea:

$$1 - \frac{v_1^2}{c^2} = 1 - \frac{1}{c^2} \cdot \frac{4v'^2}{(1 + v'^2/c^2)^2} = \left(\frac{1 - v'^2/c^2}{1 + v'^2/c^2}\right)^2,$$

se obține:

$$m_1 \sqrt{1 - v_1^2 / c^2} = m_0$$
, sau: $m_1 = \frac{m_0}{\sqrt{1 - v_1^2 / c^2}}$.

Așadar, în cazul în care un corp cu masa de repaus m_0 se deplasează cu viteza v, masa sa este funcție de viteză, dată de relația:

$$m = \frac{m_0}{\sqrt{1 - \frac{\boldsymbol{v}^2}{c^2}}} \cdot$$

Când raportul $\frac{\boldsymbol{v}}{c} \to 0$, $m \to m_0$, adică, în aproximația newtoniană, masa m poate fi confundată cu constanta m_0 , numită masa de repaus a corpului respectiv. Dependența $m=f(\boldsymbol{v})$ este ilustrată în figura 1.7.

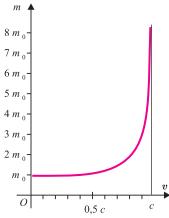


Fig. 1.7. Dependența m = f(v).

1.3.4. Relaţia masă-energie

Dacă principiul fundamental al mecanicii scris sub forma $\vec{F} = \frac{d(m\vec{v})}{dt}$ este valabil în TRR, atunci sunt valabile și teoremele care decurg din el, printre care și teorema variației energiei cinetice.

Deci:

$$dE_c = dL$$
, $dE_c = \vec{F}d\vec{r}$, $d\vec{r} = \vec{v}dt$.

În continuare:

$$dE_{c} = \frac{d(m\vec{v})}{dt}\vec{v}dt = \vec{v}d(m\vec{v}); dE_{c} = m\vec{v}d\vec{v} + v^{2}dm = mvdv + v^{2}dm.$$

Considerând m = m(v) avem:

$$dm = \frac{dm}{dv}dv = \frac{d}{dv}\left(\frac{m_0}{\sqrt{1-v^2/c^2}}\right)dv = \frac{-m_0\left(-\frac{2v}{c^2}\right)}{2\sqrt{1-\frac{v^2}{c^2}\left(1-\frac{v^2}{c^2}\right)}}dv;$$

$$dm = \frac{m\mathbf{v}d\mathbf{v}}{c^2 - \mathbf{v}^2},$$

de unde: $m\mathbf{v}d\mathbf{v} = (c^2 - \mathbf{v}^2)dm$.

Deci: $dE_c = (c^2 - v^2)dm + v^2dm$, sau $dE_c = c^2dm$.

Integrăm de la m_0 la m(v) (de la masa de repaus când $E_{c_0} = 0$, $v_0 = 0$, la masa de mişcare):

$$E_{\rm c} = c^2 \int_{m_0}^m {\rm d}m \; ; \; E_{\rm c} = mc^2 - m_0 c^2,$$

sau $E_c = E - E_0$, unde $E = mc^2$ reprezintă energia totală relativistă asociată masei de mişcare, iar $E_0 = m_0c^2$ este energia totală relativistă asociată masei de repaus.

La o creștere infinit mică a masei, îi corespunde o energie cinetică finită datorită factorului $c^2 = 9.10^{16} \text{ m}^2/\text{s}^2$.

Altă formă:
$$E_{\rm c} = (m-m_0)c^2 = \left(\frac{1}{\sqrt{1-v^2/\,c^2}}-1\right)m_0{\rm c}^2.$$

Folosind dezvoltarea în serie Taylor:

$$f(x) = f(0) + \frac{1}{1!} f_x'(0) x + \frac{1}{2!} f_x''(0) x^2 + ...,$$

a funcției $\frac{1}{\sqrt{1-x}}$ după puterile raportului $x = v^2/c^2$ și reținând primii termeni:

$$f(x) = \frac{1}{\sqrt{1-x}} = (1-x)^{-\frac{1}{2}}; f(0) = 1;$$

$$f'(x) = \left(-\frac{1}{2}\right)(1-x)^{-\frac{3}{2}}(-1) = \frac{1}{2}(1-x)^{-\frac{3}{2}}, f'(0) = \frac{1}{2};$$

$$f''(x) = \frac{1}{2}\left(-\frac{3}{2}\right)(1-x)^{-\frac{5}{2}}(-1) = \frac{3}{4}(1-x)^{-\frac{5}{2}}, f''(0) = \frac{3}{4},$$

se obține:

$$E_{\rm c} = \left[\left(1 + \frac{1}{2} \cdot \frac{{\boldsymbol v}^2}{c^2} + \frac{3}{8} \cdot \frac{{\boldsymbol v}^4}{c^4} + \dots \right) - 1 \right] m_0 c^2.$$

Dacă reținem doar un termen obținem: $E_c \approx \frac{m_0 v^2}{2}$ adică expresia clasică a energiei cinetice.

Expresia energiei totale a particulei libere:

$$E = mc^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}},$$

este celebra formulă a lui Einstein pe baza căreia s-a dezvoltat întreaga fizică nucleară de după anul 1905.

Este interesant de semnalat că formula $E = mc^2$ a fost dedusă de fizicianul austriac Friedrich Hasenohrl în anul 1904 din considerații nerelativiste.

Deşi expresia $E = mc^2$ este numită de obicei energia totală, trebuie subliniat că în ea nu este inclusă energia potențială a particulei situată într-un câmp exterior.

Formula lui Einstein reflectă o legătură directă, de proporționalitate între energie și masă.

Experiențe de optică fotonică și de fizică nucleară au arătat că relația $E = mc^2$ este universală, adică este valabilă pentru orice formă de energie. Orice variație de energie implică o variație corespunzătoare a masei corpului ($\Delta E = c^2 \Delta m$).

Legea conservării energiei este și legea conservării masei.

Şi din formula lui Einstein $E = mc^2$ rezultă că nu se poate atinge viteza luminii: v = c, $m \to \infty$, $E \to \infty$ ceea ce nu se poate admite din punct de vedere fizic.

Formula lui Einstein evidențiază imensa energie conținută în materia aflată sub formă de substanță.

Astfel, energia unui kilogram de substanță este:

$$E_0 = 9.10^{16} \text{ J},$$

adică totuna cu energia necesară pentru a ridica 28,7 miliarde de tone de substanță de la sol până la vârful turnului Eiffel (la aproximativ 320 m).

Unii filozofi sau chiar fizicieni interpretează greșit formula $E=mc^2$ considerând că ea exprimă transformarea materiei în energie. Întrucât energia este o proprietate a materiei este greșit să se afirme că materia se transformă într-o proprietate a sa care este energia.

Formula lui Einstein exprimă un proces de transformare, dar nu a materiei în energie, ci a materiei dintr-o formă în alta, dintr-o formă *ponderală* (substanța) într-o formă *radiantă* (câmpul) în ambele sensuri.

Energia uriașă care apare în reacțiile nucleare (inclusiv în bombele nucleare sau termonucleare) se datorează unei micșorări a masei ponderale, adică pe seama *defectului de masă*, fenomen care va fi studiat în cadrul temei despre reactii nucleare.

Formula lui Einstein $E = mc^2$ a fost strălucit verificată în fenomenul prin care un foton γ absorbit de un corp se transformă în două particule corpusculare (deci materie ponderală) și anume în electron (e^-) și pozitron (e^+) .

Transformarea fotonului în perechea electron-pozitron se poate face numai dacă energia sa este cel puțin egală cu de două ori energia relativistă de repaus a electronului sau a pozitronului, adică:

$$E_{\min} = hv_{\min} = 2m_0c^2 = 2.9, 1.10^{-31}.9.10^{16} = 1,64.10^{-13} \text{ J} = 1,022 \text{ MeV};$$

$$\frac{hc}{\lambda_{\text{max}}} = 2m_0c^2; \ \lambda_{\text{max}} = \frac{h}{2m_0c} = \frac{6,62 \cdot 10^{-34}}{2 \cdot 9,1 \cdot 10^{-31} \cdot 3 \cdot 10^8} = 1,21 \cdot 10^{-12} \text{ m} = 0,012 \text{ Å}.$$

$$\lambda_{\text{verde}} = 5460 \text{ Å} >> \lambda_{\text{max}},$$

deci fotonii corespunzători lui λ_{\max} trebuie să aibă energii mari, adică fotoni γ sau fotoni neutrino, aceștia din urmă postulați de fizicianul elvețian Wolfgang Pauli (1900–1958), laureat al Premiului Nobel în anul 1930. Acesta a emis în anul 1930 ipoteza neutrinului în acord cu legile de conservare a energiei și a momentului cinetic la dezintegrarea beta (potrivit reacției β^+ : ${}^1_{\mu}p \rightarrow {}^1_{0}n + e^+ + \nu$, unde cu ν a fost notat neutrinul).

1.3.4.1. Relația dintre energia totală, impulsul și masa de repaus în teoria relativitătii restrânse

Să stabilim acum relația între energia totală, impulsul și masa de repaus ale unui corp (particulă) în cadrul teoriei relativității restrânse (TRR):

$$E = mc^2; \ \vec{p} = m\vec{v};$$

$$E = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}}; \ v^2 = \frac{p^2}{m^2}; \ E = \frac{m_0 c^2}{\sqrt{1 - \frac{p^2}{m^2 c^2}}}; \ E = \frac{m_0 c^2}{\sqrt{1 - \frac{p^2 c^2}{(mc^2)^2}}};$$

$$E = \frac{m_0 c^2}{\sqrt{1 - \frac{p^2 c^2}{E^2}}}\,;\; E^2 = \frac{(m_0 c^2)^2}{1 - \frac{p^2 c^2}{E^2}}\,;\; E^2 - p^2 c^2 = m_0^2 c^4;\; E = \sqrt{p^2 c^2 + m_0^2 c^4}\,;$$

$$E = c\sqrt{p^2 + (m_0c)^2},$$

aceasta fiind exprimarea energiei funcție de impuls în mecanica relativistă, analoagă relației $E_c = \frac{p^2}{2m}$ din mecanica newtoniană.

Acest rezultat poate fi interpretat ca o relație de unificare a energiei E, impulsului p și masei de repaus m_0 pentru particulele relativiste.

Pentru fotoni, având $m_0 = 0$, rezultă:

$$E_{\rm f} = p_{\rm f}c; \quad p_{\rm f} = \frac{E_{\rm f}}{c} = \frac{hv}{c} = \frac{h}{\lambda}; \left(\lambda = \frac{c}{v}\right);$$

(h este constanta lui Planck).

Deci, asemenea particule, cu $m_0 = 0$, au impulsul $p = mc = \frac{h}{\lambda}$ și se deplasează cu viteza c în orice sistem inerțial, oricare ar fi impulsul lor p.

1.3.4.2. Mărimi normate. Definirea regimurilor dinamice: newtonian, relativist și extrem relativist

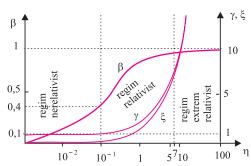
În vederea tratării unitare a mișcării diferitelor particule se recurge la normarea mărimilor ce caracterizează mișcarea acestora. Prin *normare* se înțelege raportarea (împărțirea) vitezei particulei \vec{v} la viteza luminii c în spațiul liber și, respectiv a masei, energiei, impulsului, la expresiile corespunzătoare particulei în repaus. Astfel, se definesc:

$$\vec{\beta} = \frac{\vec{v}}{c} \; , \; \gamma = \; \frac{E}{E_0} = \frac{m}{m_0} \; , \; \eta \; = \; \frac{E_c}{E_0} \; , \; \; \vec{\xi} = \frac{\vec{p}}{m_0 c} = \gamma \vec{\beta} \; . \label{eq:beta}$$

Viteza luminii în spațiul liber este o constantă universală și este considerată aici în modul, astfel că viteza normată $\bar{\beta}$ și impulsul normat $\bar{\xi}$ sunt vectori.

Relațiile de mai sus permit exprimarea acestor mărimi în funcție de oricare alta (v. tabelul 1.1):

În figura 1.8 este reprezentată variația mărimilor normate β , γ și ξ în funcție de energia cinetică normată η .


Funcție de intervalul cinetic în care iau valori *parametrii reduși*, cum se mai numesc mărimile normate, putem delimita trei domenii dinamice:

- a) domeniul nerelativist, în care masa particulei poate fi considerată aproximativ constantă și egală cu masa de repaus ($\gamma \approx 1$, adică $\beta \approx 0.4$).
- b) domeniul extrem relativist, în care viteza particulei poate fi considerată constantă și egală cu viteza luminii ($\beta \approx 1$);
- c) domeniul relativist cuprins între cele două domenii amintite mai sus $(10^{-1} < \eta < 7)$.

Pentru măsurarea energiei și a impulsului se folosesc în tehnica accelerării particulelor, în fizica ato-

Tabelul 1.1

β	$(1+\eta)^{-1}(\eta^2+2\eta)^{1/2}$	$(\gamma^2-1)^{1/2}\gamma^{-1}$	$\xi(1+\xi^2)^{-1/2}$
γ	$(1-\beta^2)^{-1/2}$	η + 1	$(\xi^2+1)^{1/2}$
η	$(1-\beta^2)^{-1/2}$ 1	γ – 1	$(\xi^2+1)^{1/2}-1$
ξ	$(\gamma^2-1)^{1/2}$	$[\eta(\eta+2)]^{1/2}$	$\beta (1-\beta^2)^{-1/2}$

Fig. 1.8. Dependența vitezei, energiei și impulsului normate, de energia cinetică normată (reprezentare semilogaritmică, pe semiaxa abscisă).

mică și nucleară, unități care nu fac parte din SI, dar prezintă avantaje în calculele curente. Energia unei particule este dată de obicei în electron-volți [eV].

Electron-voltul reprezintă energia câștigată de un electron accelerat sub o diferență de potențial de 1 V.

Relația de transformare în sistemul internațional de unități (SI) este:

$$1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}.$$

În domeniul extrem relativist, impulsul este $p \approx mc = \frac{E}{c}$, ceea ce permite

introducerea unei unități arbitrare pentru impuls, $\left[\frac{eV}{c}\right]$, cu relația de transformare în SI:

$$1\frac{\text{eV}}{c} = 5,35 \cdot 10^{-28} \text{ N} \cdot \text{s}.$$

Problemă rezolvată

Cu ajutorul relațiilor din tabelul 1.1 toate problemele de dinamică relativistă se rezolvă rapid.

1. Un electron aflat într-un câmp magnetic uniform de inducție $B=2,1\cdot 10^{-2}$ T se mișcă pe o traiectorie circulară, $\vec{v}\perp\vec{B}$, având raza R=10 cm. Cunoscând că valoarea absolută a sarcinii specifice a electronului este $e/m_0=1,76\cdot 10^{11}$ C/kg, să se calculeze de câte ori este mai mare masa de mișcare a electronului față de masa lui de repaus ($c=3\cdot 10^8$ m/s).

Din egalarea forței centripete $\frac{mv^2}{R}$ cu forța lui Lorentz evB rezultă impulsul electronului pe orbita giromagnetică: mv = eRB. Din tabelul 1.1, relația dintre masa normată γ și impulsul normat ξ , $\gamma = \sqrt{1 + \xi^2}$, permite un calcul rapid pentru raportul

$$\frac{m}{m_0} = \gamma = \sqrt{1 + \left(\frac{eRB}{m_0c}\right)^2} = 1,59$$
.

Răspunsul este $m = 1,59 m_0$.

- 2. O particulă α ($m_0 = 6,65 \cdot 10^{-27}$ kg, $q = 3,2 \cdot 10^{-19}$ C, $E_0 = 6 \cdot 10^{-10}$ J) are energia cinetică $E_c = 5 \cdot 10^8$ eV și se mișcă pe o traiectorie circulară de rază R = 75,48 cm într-un câmp magnetic uniform. Să se afle: a) impulsul particulei; b) de câte ori este mai mare masa de mișcare a particulei față de masa sa de repaus; c) inducția câmpului magnetic; d) frecventa de rotatie ($c = 3 \cdot 10^8$ m/s).
 - a) Din tabelul 1.1 avem relația $\xi = [\eta(\eta + 2)]^{1/2}$, astfel că

$$p = \frac{1}{c} [E_c(E_c + E_0)]^{1/2} = 10^{-18} \text{ N} \cdot \text{s}.$$

b) Din
$$\gamma = \eta + 1 = \frac{E_c + E_0}{E_0} = 1,13$$
; c) $B = \frac{p}{qR} = 4,14$ T; d) $v = \frac{qB}{2\pi\gamma m_0} = 28$ MHz.

Întrebări. Exerciții. Probleme propuse

- **1.** Viteza luminii în vid (mai exact în *spațiul liber*, adică în spațiul fără substanță și fără câmpuri gravitaționale intense) este o mărime relativă sau o mărime absolută?
- 2. În raport cu viteza de deplasare a sursei de lumină se modifică sau nu viteza luminii?
- 3. Lumina care va străbate un mediu cu indicele de refracție n > 1, cu o viteză v < c, după ieșirea în vid își recapătă, sau nu, viteza c?

R: da.

- **4.** A putut sau nu natura să ne înzestreze cu un simț special pentru viteză, sau doar referirea la un sistem de referință inerțial ne permite sesizarea acesteia?
- **5.** Un călător vede din tren două trăsnete lovind simultan solul într-un punct *A* dinaintea trenului şi într-un punct *B* din urma trenului, raportate la sensul de mişcare a trenului. Care dintre trăsnete a lovit primul solul pentru un observator aflat pe Pământ?
 - 6. Să se calculeze v din ultima problemă rezolvată.

R: $1,4.10^8$ m/s.

7. În unele acceleratoare de particule cu sarcină electrică, se impune condiția ca variația masei particulei cu viteza să nu depășească 1% din masa de repaus a particulei. Să se calculeze viteza până la care pot fi accelerate particulele.

R: 0,14*c*.

8. O particulă se mişcă în vid cu viteza v = 2/3c. De câte ori este mai mare energia totală a particulei decât energia de repaus?

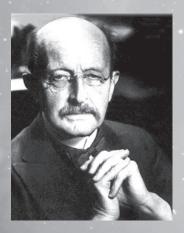
R: de 1,34 ori.

- 9. Să se demonstreze că în dinamica relativistă accelerația \vec{a} nu mai este direct proporțională cu forța și nici direcția ei nu mai coincide cu direcția forței, ca în cazul dinamicii nerelativiste.
 - 10. Considerăm că un corp primește căldura de 1 J; cu cât crește masa acestuia?

R: $\Delta m = 1,11 \cdot 10^{-17}$ kg.

11. Care este masa corpului căruia îi corespunde o energie de 500 miliarde kWh?

R: 20 kg.


Test recapitulativ

- 1. Două particule care se deplasează pe aceeași direcție și în același sens în referențialul S cu aceeași viteză v = 4c/5 ciocnesc o țintă fixă la un interval de timp $\Delta t = 2ns$ măsurat din S. Distanța proprie d_0 dintre particule înainte de ciocnire este:
 - A) 8 cm; B) 2 m; C) 0,2 m; D) 0,8 m; E) 1 m.
- 2. Două rachete cosmice se deplasează una spre cealaltă cu viteze egale 3c/4 în raport cu un observator aflat pe Pământ. Viteza de apropiere a rachetelor este:
 - A) 0,9c; B) 0,96c; C) 0,88c; D) 0,92c; E) 1,12c.
- 3. O navă cosmică se deplasează față de un observator aflat pe Pământ cu viteza v = 0.99c. Durata zborului rachetei pentru observator, dacă ceasul navei indică trecerea unui an, este:
 - A) 7 ani; B) 8 ani; C) 5 ani; D) 5,2 ani; E) 7,1 ani.
 - 4. Pentru ce valoare a vitezei de transport V, $\gamma = \frac{1}{\sqrt{1 \frac{V^2}{c^2}}}$ diferă de unitate cu 1%?
 - A) c/7; B) c/7,2; C) c/6; D) c/7,1; E) c/6,8.
 - 5. Dacă viteza de transport este $8,4\cdot10^7$ m/s, cât reprezintă atunci γ față de unitate? A) 5%; B) 0,06; C) 5,3%; D) 4%; E) 3,8%.
 - 6. O particulă α (nucleul atomului de heliu) are masa de repaus de patru ori mai mare

decât masa de repaus a unui proton. Dacă masa de mişcare a protonului devine egală cu masa de repaus a particulei α, viteza lui ar fi:

- A) 0,96c; B) 0,9(6)c; C) 0,968c; D) 0,970c; E) 2,92·10⁸ m/s.
- 7. Dacă masa de mişcare a unui proton reprezintă 180% din masa de repaus $m_0 = 1,67 \cdot 10^{-27}$ kg, viteza şi energia cinetică ale protonului au valorile:
 - A) $2,492 \cdot 10^8$ m/s; $1,2 \cdot 10^{-10}$ J;
 - B) $2,6\cdot10^8$ m/s; $2,7\cdot10^{-10}$ J;
 - C) $2,40\cdot10^8$ m/s; $2,8\cdot10^{-11}$ J;
 - D) $2.3(6)\cdot10^8$ m/s; $1.4\cdot10^{-11}$ J.
- **8.** Viteza la care ajunge un electron accelerat într-un câmp electrostatic la o diferență de potențial de 0,5 MV, dacă pornește din repaus, este:
 - A) 0,87c; B) 2,8·10⁸ m/s; C) 2,78·10⁵ km/s; D) 9,42·10⁸ km/h; E) 0,72c.
- 9. De câte ori este mai mare lucrul mecanic efectuat pentru a mări viteza unei particule cu masa de repaus m_0 de la 0.6c la 0.8c față de lucrul mecanic calculat nerelativist cu aceleași date:
 - A) 3 ori; B) 3,35; C) 4; D) 2,8; E) 2,5.
- **10.** O particulă accelerată atinge 96% din viteza luminii în vid. Contracția relativă a particulei este:
 - a) 68%; B) 65%; C) 68,78%; D) 73%; E) 72%.

Elemente de fizică cuantică

- 2.1. Efectul fotoelectric extern
 - 2.1.1. Legile efectului fotoelectric extern
 - 2.1.2. Interpretarea legilor efectului fotoelectric extern
 - 2.1.3. Ipoteza lui Planck. Ipoteza lui Einstein. Ecuația lui Einstein
 - 2.1.4. Aplicații ale dispozitivelor optoelectronice
- 2.2. Efectul Compton*
- 2.3. Dualismul undă-corpuscul
- 2.4. Ipoteza de Broglie. Difracția electronilor. Aplicații

^{*} Teme destinate claselor cu 3 ore pe săptămână la disciplina Fizică.

2

Elemente de fizică cuantică

Lumina, fiind o radiație electromagnetică, posedă atât proprietăți ondulatorii cât și corpusculare.

Aspectul ondulatoriu al luminii se manifestă în fenomenele de interferență, difracție și polarizare.

Fenomenele fizice care implică natura corpusculară a radiației electromagnetice sunt efectul fotoelectric și efectul Compton, a căror prezentare va fi făcută în acest capitol. Se va arăta apoi că aspectele ondulatoriu și corpuscular ale radiației electromagnetice nu se exclud reciproc, ci trebuie considerate ca două caracteristici diferite ale acesteia.

Optica fotonică studiază, sub aspectul corpuscular (fotonic), natura fenomenelor luminoase și interacția radiațiilor luminoase cu substanța.

2.1. Efectul fotoelectric extern

2.1.1. Legile efectului fotoelectric extern

Efectul fotoelectric constă în emisia de electroni (numiți fotoelectroni) de către o substanță sub acțiunea radiației electromagnetice.

Acest fenomen a fost descoperit în anul 1887 de Heinrich Hertz, care a constatat

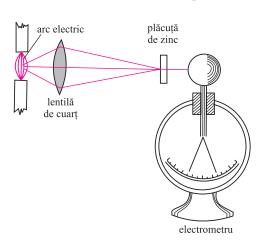


Fig. 2.1. Schema experienței lui Hallwachs.

că o descărcare electrică se produce mai ușor dacă electrozii sunt iluminați cu lumina provenită de la un arc electric, în comparație cu situarea descărcării în întuneric.

Un an mai târziu, fizicianul englez Wilhelm Hallwachs a observat că dacă radiațiile ultraviolete conținute în radiația arcului electric cad asupra unei plăci de zinc încărcate electric negativ, aceasta își pierde sarcina (fig. 2.1). Dacă lentila de cuarț care focaliza radiația pe proba de zinc era înlocuită cu una de sticlă, fenomenul nu mai apărea, spre deosebire de cuart, sticla

absorbind radiația ultravioletă. Repetând experiența pentru diferite stări de încărcare a probei de zinc, observând deviațiile foitelor de aur ale electrometrului în functie de aceste încărcări, Hallwachs a tras concluzia că sub actiunea radia-

tiilor ultraviolete placa de zinc emite particule încărcate negativ, numite, ulterior, electroni.

Pentru studiul efectului fotoelectric extern se folosește un dispozitiv (fig. 2.2) format dintr-un tub de sticlă vidat (T), prevăzut cu o fereastră de cuart (Q) și doi electrozi interiori: catodul (C) și anodul (A). Iluminarea catodului fotoelectrono-emisiv se face prin fereastra Q, transparentă pentru radiațiile ultraviolete.

Electrozii fotocatod si anod sunt conectati la o sursă de curent continuu prin intermediul unui montaj potentiometric, folosind reostatul R.

Voltmetrul V și microampermetrul (galvanometrul) G permit determinarea relației curent-tensiune, I = f(U), a dispozitivului. Mentinând constante frecventa (v) și fluxul radiatiei electromagnetice (Φ) care cade pe catod, din studiul caracteristicii curent-tensiune (fig. 2.3) se observă următoarele proprietăți ale fenomenului fotoelectric:

- pentru valori ale tensiunii U mai mari decât o anumită valoare U_s , intensitatea curentului atinge o anumită valoare maximă (de saturație) I_z ;
- la anularea tensiunii, intensitatea curentului electric este diferită de zero (I_0) ;
- pentru a anula intensitatea curentului electric, este necesară aplicarea unei tensiuni inverse, numită tensiune de frânare, $U_{\rm f}$.

Între tensiunea de frânare și energia cinetică maximă a fotoelectronilor emisi există relația:

$$E_{CM} = eU_f$$
, (2.1)
e fiind sarcina electronului.

Modificând fluxul și frecvența radiației electromagnetice, se obțin legile efectului fotoelectric:

I. Intensitatea curentului fotoelectronic de saturație I_s este direct proporțională cu fluxul Φ al radiațiilor electromagnetice incidente, când frecventa v este constantă (fig. 2.4).

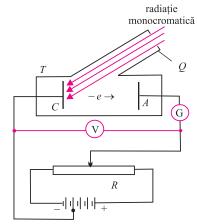
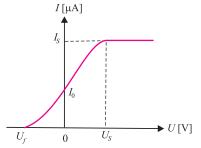



Fig. 2.2. Schema montajului pentru studiul experimental al efectului fotoelectric.

Fig. 2.3. Caracteristica I = f(U)a efectului fotoelectric.

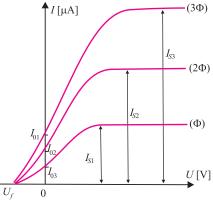


Fig. 2.4. Ilustrarea primei legi a efectului fotoelectric.

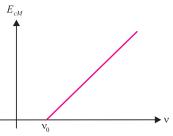


Fig. 2.5. Dependența liniară a

energiei cinetice maxime a fotoelectronilor de frecvența radiației incidente. Pragul fotoelectric: v_0 .

IV. Efectul fotoelectric se produce practic instantaneu (intervalul de timp dintre căderea radiației incidente și emisia fotoelectronilor fiind de ordinul 10^{-10} s).

Lucrul mecanic necesar pentru extragerea unui electron de pe suprafața metalului este denumit lucru de extracție, L_e; este o mărime caracteristică pentru fiecare metal în parte. Are valori cuprinse între 0,5 și 5 electron-volți sau $(0,8 \div 8) \cdot 10^{-19}$ J.

- II. Energia cinetică maximă E_{cM} a fotoelectronilor este proporțională cu frecvența radiației incidente și nu depinde de fluxul acesteia (fig. 2.5).
- III. Efectul fotoelectric extern se produce numai pentru radiații incidente a căror frecvență este mai mare decât o anumită valoare vo numită frecvență de prag, care este o caracteristică a fiecărui metal în parte (fig. 2.6).

Metalele au frecvențe de prag în domeniul vizibil şi în ultra-

violet.

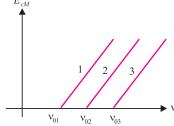


Fig. 2.6. Dependența liniară a energiei cinetice maxime a fotoelectronilor de frecventa radiatiilor incidente pentru fotocatozi diferiți.

2.1.2. Interpretarea legilor efectului fotoelectric extern

Legile efectului fotoelectric extern, stabilite pe cale experimentală, nu pot fi explicate cu ajutorul teoriei ondulatorii.

Din figura 2.4 se observă că, indiferent de valoarea fluxului de energie luminoasă care cade pe catod, tensiunea de frânare are aceeași valoare. Aceasta înseamnă că energia cinetică a electronilor emiși nu crește, deci ea nu depinde de flux.

 Conform teoriei ondulatorii, unda electromagnetică ce interacționează cu substanța ar trebui să producă oscilații forțate ale electronilor ce compun substanța.

Valoarea fluxului (Φ) este direct proporțională cu energia undei care, la rândul ei, este direct proporțională cu pătratul amplitudinii:

$$\Phi \sim E_{_t} \sim A^2.$$

Prin urmare, energia electronilor extrași ar trebui să fie proporțională cu amplitudinea undei incidente, deci cu fluxul, ceea ce este în neconcordanță cu legea a II-a a efectului fotoelectric extern.

- O altă neconcordanță este relevată de legea a III-a, conform căreia efectul fotoelectric se produce numai pentru o anumită frecvență de prag, ori din punctul de vedere al teoriei ondulatorii el ar trebui să se producă pentru orice frecvență a radiațiilor incidente dacă intensitatea lor este suficient de mare.
- A IV-a lege stabilește să efectul fotoelectric extern se produce practic instantaneu. Conform teoriei ondulatorii, între momentul punerii în oscilație forțată a electronilor și momentul emisiei, adică până când electronii preiau energia

necesară, ar trebui să se scurgă un anumit timp (ca valoare tipică, aproximativ 4000 secunde).

2.1.3. Ipoteza lui Planck. Ipoteza lui Einstein. Ecuația lui Einstein

Pentru corecta interpretare a legilor efectului fotoelectric este necesară teoria cuantelor, elaborată în anul 1900 de către Max Planck (Premiul Nobel, în anul 1918). Acesta a emis ipoteza, confirmată ulterior, că *schimbul de energie între microsistemele fizice (atomi, molecule, ioni, nucleu) prin intermediul radiației electromagnetice nu se face continuu, ci discret, energia schimbată fiind cuantificată în porții hv;* v este frecvența undei, iar $h = 6,626075 \cdot 10^{-34} \, \text{J} \cdot \text{s}$ este constanta lui Planck, constantă fizică universală, care apare în fenomenele fizice, la scară microscopică. În anul 1905, Einstein a presupus că radiația electromagnetică de frecvență v este alcătuită dintr-o mulțime de particule, denumite ulterior *fotoni*, fiecare foton având energia $E_f = hv$. Discontinuitatea energiei nu se referă – deci – numai la procesele de emisie și absorbție de lumină, ci și la structura luminii, a undei electromagnetice însăși.

Conform concepției cuantice, când un foton incident întâlnește un electron, poate ceda acestuia întreaga sa energie $E_f = hv$; părăsind metalul, electronul va avea o anumită energie cinetică. Bilanțul energetic conduce la cunoscuta ecuație a lui Einstein:

$$hv = L_{e} + E_{cM}. \tag{2.2}$$

S-a considerat energia cinetică maximă, deoarece L_e reprezintă lucrul de extracție a unui electron de pe suprafața metalului. Pentru electronii aflați pe straturi interioare din metal, energia de extracție L este mai mare $(L > L_e)$, deci energia cinetică a fotoelectronilor este mai mică decât aceea din ecuația lui Einstein, astfel că aceasta se scrie:

$$hv = L + \frac{m_e v^2}{2}. \tag{2.3}$$

Deoarece $eU_{f}=E_{_{CM}}$, ecuația lui Einstein se mai poate scrie și sub forma:

$$hv = L_e + eU_f. (2.4)$$

Lumina este formată dintr-un ansamblu de fotoni. Ca orice particulă, fotonul are energie și impuls.

Din teoria relativității cunoaștem relația dintre energie și masă:

cum $E = mc^2$ E = hv rezultă $hv = mc^2$; de aici, m, $masa\ de\ mişcare\ a$ fotonului este:

$$m = \frac{h\mathbf{v}}{c^2}. (2.5)$$

Fotonul se deplasează cu viteza luminii v = c. Din formula variației masei cu

viteza $m = \sqrt{1 - \frac{v^2}{c^2}}$ rezultă că masa de repaus a fotonului este zero:

$$m_0 = m\sqrt{1 - \frac{v^2}{c^2}} = 0.$$

Impulsul este:

$$p = mc = \frac{hv}{c} = \frac{h}{\lambda} \tag{2.6}$$

Mărimile care caracterizează particula numită foton sunt:

- energia hv,

- viteza v = c;

– masa de mişcare $m = \frac{hv}{c^2}$;

– masa de repaus $m_0 = 0$;

- impulsul $p = \frac{hv}{c} = \frac{h}{\lambda}$.

Cum explică fizica cuantică legile efectului fotoelectric extern stabilite experimental?

 Legea I poate fi explicată şi pe baza teoriei ondulatorii şi cu ajutorul fizicii cuantice.

Curentul atinge valoarea de saturație când toți electronii emiși de catod în unitatea de timp sunt captați de anod.

Cu cât fluxul radiației incidente este mai mare și numărul fotonilor incidenți este mai mare și, prin urmare, numărul electronilor crește, ceea ce duce la creșterea valorii intensității de saturație.

• Din relația 2.2 rezultă că energia cinetică maximă a fotoelectronilor emişi este egală cu:

$$E_{cM} = hv - L_c. ag{2.7}$$

Această relație pune în evidență variația liniară a energiei cinetice a electronilor emişi cu frecvența așa cum rezultă și din legea a II-a (fig. 2.5).

• Pentru o anumită valoare a frecvenței, energia cinetică a fotoelectronilor emiși devine nulă și relatia 2.2 devine:

$$L_{e} = hv_{0}. (2.8)$$

În acest caz energia absorbită de la foton este folosită doar pentru a extrage fotoelectronul așa cum afirma legea a III-a. La frecvențe mai mici decât frecvența de prag, v_0 , efectul fotoelectric extern nu mai apare.

• Efectul fotoelectric extern se produce aproape instantaneu, așa cum arată legea a IV-a, întrucât interacțiunea dintre foton și electron se produce într-un interval de timp neglijabil.

Așadar, ipoteza privind caracterul corpuscular al radiației electromagnetice explică corect legile efectului fotoelectronic. Pe de altă parte, însă, teoria ondulatorie a undelor electromagnetice trebuie menținută, deoarece legile clasice sunt valabile în privința propagării câmpului electromagnetic (difracția, interferența etc.). Se va prezenta mai târziu cum pot fi corelate aceste două caracteristici diferite ale radiației electromagnetice.

Probleme rezolvate

1. Să se arate că efectul fotoelectric nu poate să apară pentru un electron liber.

Considerăm un sistem izolat ca fiind format din cele două particule care interacționează, fotonul incident și electronul presupus liber. Scriem pentru acest sistem legea conservării energiei și legea conservării impulsului:

$$\begin{cases} hv = \frac{mv^2}{2} \\ \frac{hv}{c} = mv \end{cases} \Rightarrow \frac{mv^2}{2c} = mv \Rightarrow v = 2c.$$

Imposibil!

- 2. Pragul fotoelectric al fotocatodului unui dispozitiv fotoelectric este $\lambda_0 = 6.10^{-7}$ m.
- a) Să se calculeze lucrul mecanic de extracție a unui electron, $L_{\rm e}$.
- b) Fotocatodul este iluminat cu radiație luminoasă având lungimea de undă $\lambda = 5 \cdot 10^{-7}$ m. Care este v_{M} , viteza maximă cu care părăsesc electronii fotocatodul?
 - c) Care este tensiunea de frânare?
- d) Dacă puterea transmisă fotocatodului de radiația fotonică este $P=2\cdot 10^{-4}$ W, intensitatea curentului de saturație fiind $I_s=1.6~\mu\text{A}$, să se detrmine randamentul fotonic, adică procentul de fotoni care interacționează cu electronii fotocatodului.

a)
$$L_e = hv_0 = h\frac{c}{\lambda_0} = 6,62 \cdot 10^{-34} \frac{3 \cdot 10^8}{6 \cdot 10^{-7}} = 3,31 \cdot 10^{-19} \text{ J} = 2,068 \text{ eV};$$

b)
$$hv = L_e + \frac{1}{2} m v_M^2$$
; $v_M = \sqrt{\frac{2 \left(h \frac{c}{\lambda} - h \frac{c}{\lambda_0} \right)}{m}} = 3,83 \cdot 10^5 \text{ m/s}.$

c) Intensitatea fotocurentului se anulează pentru

$$eU_f = \frac{mv_M^2}{2}$$
, adică: $U_f = \frac{mv_M^2}{2e} = 0.41 \text{ V}$.

d) Puterea primită de fotocatod prin iluminare este P=nhv. De aici, n, numărul de fotoni primiți de fotocatod într-o secundă este $n=\frac{P}{hv}$ fotoni/s. Din expresia intensității fotocurentului de saturație $I_s=n'e$, n' fiind numărul de electroni emiși de fotocatod într-o secundă, se obține:

$$n' = \frac{I_s}{e}$$
 fotoelectroni/s.

Rezultă:
$$\frac{n'}{n} = \frac{I_s \cdot h \cdot c}{P \cdot e \cdot \lambda} \approx 2\%.$$

Înseamnă că din fiecare o sută de fotoni care cad pe fotocatod numai doi fotoelectroni sunt emiși de fotocatod.

2.1.4. Aplicații ale dispozitivelor optoelectronice

Efectul fotoelectric stă la baza funcționării celulei fotoelectrice – dispozitiv care produce semnale electrice prin iluminare. Celula fotoelectrică se folosește, de exemplu, la releul fotoelectric, la redarea sunetelor în cinematograful sonor, în televiziune – pentru transformarea semnalelor luminoase în semnale electrice.

Releul fotoelectric este un releu electromagnetic comandat de o celulă fotoelectrică (fig. 2.7). Acesta funcționează astfel: lumina cade pe fotocatod (din Cs, Na) și determină apariția unui fotocurent de intensitate I_f care, după amplificare, trece prin circuitul unui electromagnet E_m ; câmpul magnetic al acestuia provoacă închiderea circuitului comandat. Comanda fiind sigură, practic fără inerție, rapidă, releul fotoelectric se folosește la numărarea unor corpuri în mișcare, la semnalizarea prezenței umane — când un operator intră într-o zonă periculoasă —, la conectarea automată a rețelei de iluminat când se întunecă, la comanda acționării ușilor în locurile de afluență mare etc.

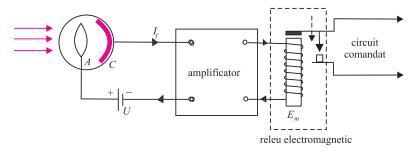
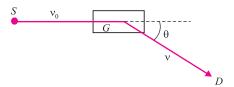


Fig. 2.7. Releu fotoelectric.

Fotomultiplicatorul este un dispozitiv care transformă semnalul luminos în semnal electric. Este realizat din asocierea unui multiplicator cu o fotocelulă.


Radiațiile luminoase căzute pe fotocatod determină emisia unui fascicul de fotoelectroni, care este accelerat în câmpul electrostatic creat de un anod de accelerare. Fasciculul cade succesiv pe o serie de dinode, fiind amplificat prin efectul de emisie secundară de pe fiecare dinodă, numărul electronilor secundari rezultați este mai mare decât cel al electronilor primari (incidenți pe dinodă). Curentul obținut pe anodul final este proporțional cu fluxul luminos incident. Un fotomultiplicator se caracterizează prin sensibilitate (variația intensității curentului la ieșire în funcție de variația fluxului radiațiilor incidente), prin curentul de

întuneric (intensitatea curentului de la ieșire în absența radiațiilor), prin zgomot (fluctuația intensității curentului de ieșire, ceea ce determină un anumit raport semnal/zgomot), prin caracteristica spectrală (variația sensibilității în funcție de lungimea de undă a radiației incidente) și prin sensibilitatea limitată de raportul semnal/zgomot. În televiziune, fotomultiplicatorul se aplică la sistemele de captare a imaginilor. Este folosit și la detecția radiațiilor nucleare, după cum vom vedea la paragraful respectiv.

2.2. Efectul Compton*

Dacă un fascicul îngust de raze X, provenit de la o sursă S, trece printr-un bloc de grafit G (fig. 2.8), radiațiile incidente sunt împrăstiate în toate directiile.

Pentru diferite unghiuri de împrăștiere θ , detectorul D înregistrează pe lângă radiația incidentă cu lungimea de undă λ_0 și o altă radiație cu lungimea de undă, $\lambda > \lambda_0$.

Fig. 2.8. Reprezentarea schematică a experimentului Compton.

Din punct de vedere macroscopic, lumina și în general radiația electromagnetică este o undă. Din punct de vedere microscopic, lumina este un ansamblu de particule cuantice.

Fenomenul se observă pentru lungimi de undă mici (radiații X și radiații γ), deci, pentru frecvențe mari, $\lambda = c/\nu$. Compton a explicat acest fenomen pe baza naturii corpusculare a undelor electromagnetice, adică a existenței fotonilor.

Fenomenul de împrăștiere elastică a fotonilor pe electronii liberi, în urma căreia pe lângă radiația incidentă mai apare o radiație cu lungimea de undă mai mare (frecvență mai mică), a fost numit efect Compton.

Dacă atomii substanței pe care se produce împrăștierea sunt ușori (Si, B, Ba), atunci energia de legătură a electronilor de valență este mult mai mică decât energia fotonului incident hv_0 și electronul poate fi considerat practic liber.

Se stabilește experimental că, *indiferent de natura substanței împrăștietoare*, diferența dintre lungimile de undă ale radiației împrăștiate λ și ale radiației incidente λ_0 este cu atât mai mare cu cât unghiul de împrăștiere θ este mai mare. Se poate arăta că:

$$\lambda - \lambda_0 = a(1 - \cos \theta),$$

unde $a=2,423\cdot10^{-3}$ nm, aceeași pentru toate substanțele împrăștietoare.

Presupunând că electronul din substanța împrăștietoare era în repaus înainte de a interacționa cu fotonul, legea conservării energiei se scrie sub forma:

$$hv_0 = hv + E_c + L,$$

unde: hv_0 este energia fotonului incident, hv – energia fotonului împrăștiat sub unghiul θ , E_c fiind energia cinetică a electronului de recul și L, lucrul mecanic

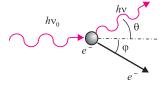


Fig. 2.9. Fotonul împrăștiat și electronul de recul în efectul Compton.

de ieşire a electronului din atomul constituent al substanței împrăștietoare (fig. 2.9).

Deoarece putem considera că electronul este liber, putem neglija L.

Interacțiunea dintre foton și electronul liber poate fi tratată ca o ciocnire elastică în care se aplică legea conservării energiei și legea conservării impulsului.

Electronul – având o masă foarte mică – atinge

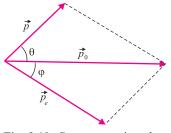
viteze mari și, prin urmare, legile de conservare ale energiei și impulsului se scriu relativist.

Legea de conservare a energiei se scrie sub forma:

$$hv_0 + m_0c^2 = hv + mc^2, (2.9)$$

iar legea de conservare a impulsului (fig. 2.10):

$$\vec{p}_0 = \vec{p} + \vec{p}_e. \tag{2.10}$$


Stiind că:

$$p_0 = \frac{h \mathbf{v}_0}{c}$$
, $p = \frac{h \mathbf{v}}{c}$ și $p_e = m \mathbf{v}$,

proiectând relațiile pe cele două axe de coordonate, Ox și Oy, legea conservării impulsului se scrie:

$$\frac{h\mathbf{v}_0}{c} = \frac{h\mathbf{v}}{c}\cos\theta + m\mathbf{v}\cos\varphi;$$

$$0 = \frac{hv}{c}\sin\theta - mv\sin\varphi,$$
 Fig. 2.10. Conservarea impulsului în cazul efectului Compton.

sau:

$$mv\cos\varphi = \frac{hv_0}{c} - \frac{hv}{c}\cos\theta, \quad mv\sin\varphi = \frac{hv}{c}\sin\theta.$$

Ridicând la pătrat și adunând ultimele două relații, se obține:

$$m^2 v^2 c^2 = h^2 (v_0^2 + v^2 - 2v_0 v \cos \theta). \tag{2.11}$$

Scriem relația 2.9 sub forma:

$$mc^2 = [h(v_0 - v) + m_0c^2],$$

și o ridicăm la pătrat:

$$m^2c^4 = [h(v_0 - v) + m_0c^2]^2.$$

Efectuând calculele, obținem:

$$m^{2}c^{4} = h^{2}(v_{0}^{2} + v^{2} - 2v_{0}v) + m_{0}^{2}c^{4} + 2m_{0}c^{2}h(v_{0} - v).$$
 (2.12)

Scăzând relația 2.11 din relația 2.12, obținem expresia:

$$m^{2}c^{4}\left(1-\frac{\boldsymbol{v}^{2}}{c^{2}}\right) = -2v_{0}vh^{2}(1-\cos\theta) + m_{0}^{2}c^{4} + 2m_{0}c^{2}h(v_{0}-v).$$
 (2.13)

Cunoscând dependența masei de viteză:

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}},$$

relația 2.13 devine:

$$v_0 v h (1 - \cos \theta) = m_0 c^2 (v_0 - v)$$

sau:

$$(1 - \cos\theta) = \frac{m_0 c^2}{h} \left(\frac{1}{\nu} - \frac{1}{\nu_0} \right) = \frac{m_0 c}{h} (\lambda - \lambda_0).$$

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos\theta). \tag{2.14}$$

Deci

Mărimea $\Lambda = \frac{h}{m_0 c}$ se numește *lungime de undă Compton*.

Când particula cu care interacționează fotonul este un electron, a cărui masă este 9,1 · 10^{-31} kg, valoarea lui h este de 6,626 · 10^{-34} J · s și c este 3 · 10^8 m/s, lungimea de undă Compton are valoarea:

$$\Lambda = 2,427 \cdot 10^{-3} \text{nm} = 2,427 \text{ pm}.$$

Rezultă că diferența lungimilor de undă ale celor două radiații decelate este:

$$\Delta \lambda = \Lambda (1 - \cos \theta) = 2\Lambda \sin^2 \frac{\theta}{2}. \tag{2.15}$$

Pentru particule cu mase mai mari decât cea a electronului, Λ ia valori foarte mici, de cele mai multe ori neglijabile față de lungimea de undă a radiației incidente.

Probleme propuse

- **1.** Pe fotocatod ($L_e = 4.2 \text{ eV}$) cade o radiație luminoasă cu lungimea de undă $\lambda = 2.10^{-7} \text{ m}$. Să se calculeze:
 - a) limita superioară a vitezei fotoelectronilor;
 - b) tensiunea de frânare (stopare);
 - c) lungimea de undă de prag.

R: a)
$$8,36 \cdot 10^5$$
 m/s; b) ~ 2 V; c) $2,95 \cdot 10^{-7}$ m.

2. O radiație scoate electroni dintr-un metal prin efect fotoelectric. Aceștia sunt reținuți la suprafața metalului cu ajutorul unui potențiai un manare $v_f = 0.00$ frecvența acestei radiații cunoscând $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$ și $v_0 = 4.78 \cdot 10^{14} \text{ s}^{-1}$. **R:** 20.78 \cdot 10^{14} \text{ s}^{-1}.

R:
$$20.78 \cdot 10^{14} \text{ s}^{-1}$$

3. Un dispozitiv Young, cu distanța dintre fante l=1 mm și distanța dintre fante la ecranul de observație D=3 m, lucrează cu lumină monocromatică. În planul de observație se deplasează o celulă fotoelectrică având catod foarte fin, care indică intensificări periodice ale fotocurentului pentru poziții distanțate cu i=1 mm.

Să se determine: lungimea de undă a radiației utilizate și potențialul de frânare a fotoelectronilor, dacă frecvența pragului fotoelectric corespunzând fotocatodului este $v_0 = 5 \cdot 10^{14}$ Hz.

R: 333 nm; 1,65 V.

4. Să se calculeze pragul fotoelectric al cesiului (Ce), știind că energia de extracție este de 1,89 eV.

R: $4.58 \cdot 10^{14}$ Hz.

- 5. O radiație monocromatică cu lungimea de undă $\lambda = 560$ nm cade pe fotocatodul unei celule cu $\lambda_0 = 600$ nm. Să se determine:
- a) energia cinetică (exprimată în eV) a electronilor emiși de fotocatod și lucrul mecanic de extracție;
- b) numărul electronilor emişi într-o secundă, dacă intensitatea curentului fotoelectric este $I = 4.8 \cdot 10^{-6}$ A.

Se cunosc: $e = 1.6 \cdot 10^{-19} \text{ C}$; $h = 6.6 \cdot 10^{-34} \text{ J·s}$; $c = 3.10^8 \text{ m/s}$.

R: a) 0.147 eV; $3.3 \cdot 10^{-19} \text{ J}$; b) $3 \cdot 10^{13} \text{ electroni/s}$.

6. O sursă de lumină monocromatică, având lungimea de undă $\lambda = 0.5 \, \mu m$, iluminează o celulă fotoelectrică ce are fotocatoda din potasiu (K); lucrul mecanic de extracție al potasiului este $L_e = 2,299$ eV. Care este energia cinetică maximă (exprimată în J) și tensiunea de frânare?

R: $0.28 \cdot 10^{-19}$ J; 0.175 V.

7. La iluminarea unui metal cu radiații de frecvențe $v_1 = 9.6 \cdot 10^{14}$ Hz și, respectiv $v_2 = 6.72 \cdot 10^{14}$ Hz, se găsesc tensiunile de frânare $U_{f1} = 1.96$ V și, corespunzător, $U_{f2} = 0.77$ V. Să se calculeze constanta lui Planck.

R: $6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}.$

8. Catoda unei celule fotoelectrice este iluminată cu radiații de lungime de undă $\lambda = 3500$ Å și apoi se aplică o diferență de potențial care stopează electronii extrași.

Aceeași fotocatodă se iluminează apoi cu o radiație a cărei lungime de undă diferă cu $\Delta\lambda = 500$ Å de cea precedentă și se constată că diferența de potențial necesară frânării fotoelectronilor este cu $\Delta U = 0,59$ V mai mare decât în primul caz. Să se determine sarcina electronului.

R:
$$\approx 1.6 \cdot 10^{-19}$$
 C.

9. Densitatea energiei luminii stelare în spațiul intergalatic este 10^{-15} J/m³. Care este concentrația corespunzătoare în fotoni, dacă se consideră că lungimea de undă medie a fotonilor este de 5000 Å?

R: $2.5 \cdot 10^3$ fotoni/m³.

10. Densitatea fluxului de energie al radiației stelei Capella care ajunge pe Terra este de $1,2 \cdot 10^{-8}$ J/m² · s. Dacă ne uităm la această stea, câți fotoni pe secundă pătrund prin pupilă, aceasta având 7 mm în diametru? Se consideră că lungimea de undă a radiației este 5000 Å?

R: $1,16 \cdot 10^6$ fotoni/s.

11. Lucrul de extracție pentru elementele K, Cr, Zn și W sunt, respectiv, 2,26 eV, 4,37 eV, 4,24 eV și 4,49 eV. Care din aceste metale vor emite fotoelectroni la iluminarea, pe rând, cu lumină roșie ($\lambda_R = 7000 \text{ Å}$), cu lumină albastră ($\lambda_A = 4000 \text{ Å}$), cu radiație ultravioletă ($\lambda_{IV} = 2800 \text{ Å}$)?

R: nici unul; K; K, Cr, Zn.

- 12. Pentru proba formată din izotopul $^{40}_{19}$ K conținut în potasiu natural în proporție de 0,011%, energia cinetică maximă a electronilor Compton este $E_c = 1,26$ MeV. Să se calculeze:
- a) de câte ori este mai mare masa de mişcare a electronului Compton în comparație cu masa sa de repaus;
 - b) viteza electronului Compton;
 - c) viteza sa relativă (normată, β).

(*Indicație*: se vor folosi relațiile dintre mărimile normate γ și η , cât și dintre mărimile normate β și γ – v. tabelul 1.1).

R: a)
$$\gamma = 3.5$$
; b) $v = 2.875 \cdot 10^8$ m/s; c) $\beta = 0.8593$.

13. Un foton cu energia cinetică de 10 keV suferă o ciocnire directă cu un electron liber în repaus și este împrăștiat sub un unghi de $\pi/3$. Să se calculeze energia cinetică a electronului Compton.

R: 96,9 eV.

14. Fotonii dintr-un fascicul de radiații X cu $\lambda_0=1$ Å sunt împrăștiați de un bloc de grafit.

Unghiul de împrăștiere este $\theta = 90^{\circ}$. Care este creșterea lungimii de undă $\Delta\lambda$ (care se mai numește *deplasare Compton*)?

R: $2,423 \cdot 10^{-12}$ m.

2.3. Dualismul undă-corpuscul

După cum am văzut, fenomenele de interferență, difracție și polarizare pun în evidență proprietățile ondulatorii ale luminii, iar efectul fotoelectric și efectul Compton pun în evidență proprietățile corpusculare.

Se constată deci, caracterul dual, ondulatoriu și corpuscular al undelor electromagnetice (al luminii).

Efectul fotoelectric și efectul Compton au fost explicate presupunând că radiația electromagnetică este un flux de particule numite fotoni care interacționează cu substanța.

Reamintim mărimile care caracterizează fotonul:

- sarcina electrică
$$q = 0$$
;
- masa de repaus $m_0 = 0$

- masa de repaus
$$m_0 = 0$$
;
- energia $E = hv$;

– masa de mişcare
$$m = \frac{hv}{c^2}$$
;

- impulsul
$$p = \frac{hv}{c} = \frac{h}{\lambda}.$$
 (2.19)

Veriga de legătură dintre aspectul ondulatoriu și cel corpuscular al luminii este constanta lui Planck, h. Ea poate fi exprimată prin produsul a două mărimi,

una ce caracterizează unda (frecvența v, perioada $T = \frac{1}{v}$ sau lungimea de undă λ) și una caracteristică particulei (energia E sau impulsul p):

$$h = ET = p\lambda$$
.

Se observă că dacă energia E și impulsul sunt mari, perioada T și lungimea de undă trebuie să fie mici. Acesta este cazul radiațiilor X și γ , la care predomină caracterul corpuscular.

În cazul undelor radio, T și λ fiind mari, predomină caracterul ondulatoriu. Pentru sistemele macroscopice constanta lui Planck este atât de mică încât ea poate fi considerată nulă.

2.4. Ipoteza de Broglie. Difracția electronilor. Aplicații

Prin analogie cu dualismul undă-corpuscul în cazul undelor electromagnetice, Louis de Broglie asociază oricărei microparticule aflate în mișcare cu energia E și impulsul p o undă caracterizată prin frecvența v și lungimea de undă λ . Relațiile între aceste mărimi sunt:

$$E = h\mathbf{v} \begin{Bmatrix} \mathbf{v} & \lambda \\ E & p \end{Bmatrix} p = \frac{h}{\lambda}. \tag{2.20}$$

Louis de Broglie a presupus că lungimea de undă a undelor asociate microparticulelor trebuie să fie dată tot de relația

$$\lambda = \frac{h}{p}$$
,

în care p este impulsul microparticulei.

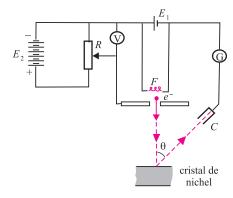
Ipoteza de Broglie: oricărei microparticule, care posedă un impuls p, i se

poate asocia în mod formal o undă cu lungime de undă $\lambda = \frac{h}{p}$, numită lungime

de undă de Broglie pe care o vom nota cu λ_R .

Undele de Broglie sunt asociate particulelor cu masă de repaus (electroni, protoni, neutroni, particule α şi molecule de hidrogen), așa cum undelor electromagnetice le sunt asociați fotoni care nu au masă de repaus. Deci radiația electromagnetică, la fel ca şi radiația corpusculară, prezintă atât proprietăți ondulatorii cât şi proprietăți corpusculare.

Fizicienii Davisson și Germer au obținut o primă confirmare experimentală a ipotezei lui de Broglie. Ei au demonstrat că electronii în mișcare prezintă


proprietăți ondulatorii, generând fenomene de difracție însoțite de interferență, specifice comportării ondulatorii.

Experimentul Davisson-Germer

Schema experimentului Davisson și Germer este dată în figura 2.11.

Electronii emişi de un filament F, alimentat de la o sursă E_1 , sunt accelerați într-un tun electronic. Sursa de accelerare a electronilor este E_2 . Tensiunea de accelerare U poate fi variată cu ajutorul reostatului R și măsurată cu voltmetrul V.

Din tunul electronic iese un fascicul monoenergetic de electroni ("monocromatic") cu energia:

Fig. 2.11. Schema experimentului Davisson-Germer.

$$\frac{m_e v^2}{2} = eU. ag{2.21}$$

Fasciculul cade pe un monocristal de nichel. Fasciculul difractat este captat de un cilindru Faraday C colector și curentul de electroni este măsurat de un galvanometru G.

Se constată că intensitatea fasciculului de electroni difractați prezintă maxime și minime care depind de U și de θ (unghiul dintre direcția fasciculului incident si directia celui reflectat).

Din relația 2.21:
$$v = \sqrt{\frac{2eU}{m_e}}.$$

În cazul nerelativist:
$$p = m_e v = \sqrt{2em_e U}$$
 (2.22)

și lungimea de undă de Broglie asociată este:

$$\lambda_{B} = \frac{h}{p} = \frac{h}{\sqrt{2em_{e}U}} = \frac{h}{\sqrt{2em_{e}}} \frac{1}{\sqrt{U}} = \frac{12,23 \cdot 10^{-10}}{\sqrt{U}}.$$
 (2.23)

În acest caz, pentru un potențial de accelerare V = 54 V, rezultă pentru lungimea de undă de Broglie:

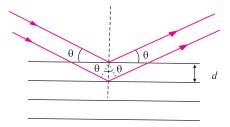
$$\lambda_B = \frac{12,23 \cdot 10^{-10}}{\sqrt{54}} = 1,664 \cdot 10^{-10} \text{ m},$$
 (2.24)

de același ordin de mărime cu lungimea de undă a radiației X.

Fenomenele de difracție pot fi observate dacă unda interacționează cu o "rețea de difracție" a cărei constantă de rețea are dimensiuni comparabile cu lungimea de undă (10^{-10} m) .

Atomii monocristalului sunt așezați ordonat, la distanțe egale unul de altul și distanța dintre doi atomi vecini este de ordinul 10^{-10} m. Aranjarea regulată a ionilor, atomilor, radicalilor moleculari, în nodurile rețelei cristaline, conferă cristalului însușirile unei rețele de difracție tridimensionale.

Studiind difracția rezelor X pe monocristale, Bragg a stabilit că intensitatea fasciculului difractat trece prin valori maxime când:


$$2d\sin\theta = k\lambda \ (k = 1, 2, 3, ...),$$
 (2.25)

unde: θ este unghiul format de planul reticular cu direcția fasciculului incident și cu cea a fasciculului difractat;

 d – constanta rețelei (distanța dintre două plane reticulare) (fig. 2.12);

 λ – lungimea de undă a radiației X.

2dsinθ – diferența de drum dintre razele difractate de două plane reticulare vecine.

Fig. 2.12. Difracția razelor X pe un monocristal.

Presupunând că particulele, cărora li s-a atașat lungimea de undă de Broglie, suferă o difracție, aplicăm relația 2.25 știind că $d=0.91\cdot10^{-10}$ m, considerând k=1 la tensiunea U=54 V, unde se obține primul maxim pentru $\theta=65^{\circ}$, se obtine:

$$\lambda_{\rm B} = 2d\sin\theta = 2.0,91.10^{-10}.0,906 = 1,65.10^{-10} \text{ m}.$$
 (2.26)

Concordanța celor două valori obținute în relațiile 2.24 și 2.26, confirmă că electronii în mișcare au proprietăți ondulatorii.

Pe măsură ce masa particulelor crește, lungimea de undă de Broglie corespunzătoare are valori foarte mici.

Microparticulele sunt *radical diferite* de particulele clasice. Ele nu sunt nici particule, nici unde în sensul clasic al acestor termeni, comportarea lor reflectând dualismul corpuscul-undă. Microparticulele, numite *particule cuantice*, se deosebesc *calitativ* de particulele clasice, supunându-se unor legi specifice.

Deși unda de Broglie asociată mișcării microparticulelor *nu este o undă* în sensul clasic al cuvântului, se folosește noțiunea de undă de Broglie.

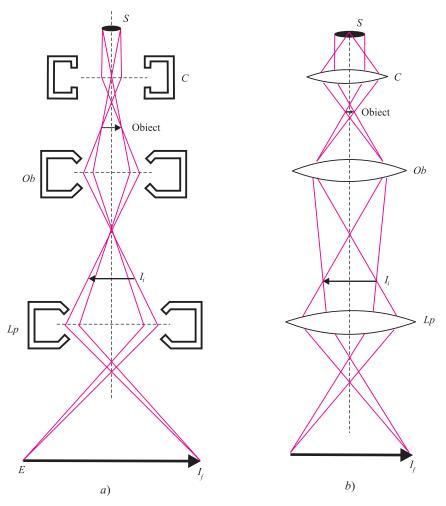
La nivel macroscopic, un corpuscul nu poate avea proprietăți ondulatorii și nici unda nu poate fi concepută ca un flux de particule discrete. Dar particulele cuantice nu aparțin nivelului macroscopic, ci nivelului cuantic. De exemplu, particulele cuantice *nu au traiectorii*.

Ele sunt obiecte radical diferite și de unde și de corpusculi.

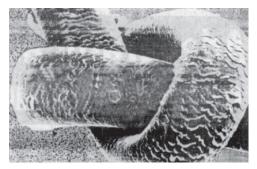
Asupra sistemelor cuantice nu putem face decât afirmații statistice.

Microscopul electronic

Este o aplicație a ipotezei lui de Broglie. Se utilizează un fascicul de electroni care cade pe un preparat, îl traversează, iar variațiile de grosime ale preparatului se transformă în variații de intensitate a fasciculului de electroni transmiși.


Utilizând câmpuri electrice sau magnetice, electronii au traiectorii asemănătoare razelor de lumină dintr-un microscop optic.

Pentru a observa distinct două puncte cu microscopul optic, trebuie ca distanța dintre ele să fie mai mare decât lungimea de undă a luminii folosite, deci mai mare de zecimi de microni (puterea de separare).


Rolul lentilelor optice îl au bobinele parcurse de curent electric – *lentile magnetice* – sau electrozii încărcați electric – *lentile electrice* – care pot focaliza sau defocaliza un fascicul de electroni.

Schema de funcționare a microscopului electronic este asemănătoare cu cea a microscopului optic (fig. 2.13).

Puterea de separare a microscopului electronic este mult superioară celei a

Fig. 2.13. Schema microscopului electronic (a) și a microscopului optic (b): S – sursă de electroni (a) și de lumină (b), C – Condensator, Ob – obiectiv, I_i – imagine intermediară, Lp – lentilă de proiecție, I_f – imagine finală, E – Ecran fluorescent.

Fig. 2.14. Să fie un şarpe încolăcit? Nicidecum. E un fir de păr, înnodat, mărit de 400 de ori la microscopul electronic.

microscopului optic, datorită lungimii de undă mult mai mici a undelor asociate electronilor.

Pentru ca imaginea să fie vizibilă, trebuie ca ea să fie transformată într-una luminoasă. În acest scop, în planul imaginii finale se află un ecran fluorescent.

Deoarece electronii au o putere mică de pătrundere, probele examinate sunt prezentate sub formă de pelicule foarte subtiri.

S-au construit și microscoape protonice și ionice, care dau măriri de 10–15 ori mai mari decât cele obținute cu microscopul electronic.

În figura 2.14 este reprezentată imaginea unui fir de păr înnodat, mărită de 400 de ori, obținută cu un microscop electronic.

Probleme rezolvate

1. Să se calculeze energia, impulsul, masa de mișcare și frecvența unui foton care corespunde unei radiații cu lungimea de undă $\lambda = 6.10^{-7}$ m.

$$E = hv = \frac{hc}{\lambda} = \frac{6.6 \cdot 10^{-34} \cdot 3 \cdot 10^{8}}{6 \cdot 10^{-7}} = 3.31 \cdot 10^{-19} \text{ J.}$$

$$p = \frac{6.6 \cdot 10^{-34}}{6 \cdot 10^{-7}} = 1.103 \cdot 10^{-27} \text{ kg·m/s}; m = \frac{hv}{c^{2}} = \frac{h}{c\lambda} = \frac{6.62 \cdot 10^{-34}}{3 \cdot 10^{8} \cdot 6 \cdot 10^{-7}} = 0.37 \cdot 10^{-35} \text{ kg.}$$

$$v = \frac{3 \cdot 10^{8}}{6 \cdot 10^{-7}} = 5 \cdot 10^{14} \text{ Hz.}$$

2. Un fascicul de electroni emişi de un tun electronic este trimis perpendicular pe un cristal. Difracția are loc pe un sistem de plane cristaline, paralele, distanțate cu d = 0,3 nm. Ce tensiuni de accelerare sunt necesare pentru a pune în evidență comportarea ondulatorie a electronilor prin difracție?

Se dau: $h = 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}$; $m_e = 9.1 \cdot 10^{-31} \text{ kg si } e = -1.6 \cdot 10^{-19} \text{ C}$.

$$2d\mathrm{sin}~\theta=k\lambda \Rightarrow 2d=\frac{h}{\sqrt{2em_eU}};~U=\frac{h^2}{4d^22em_e}\,.$$

Înlocuind numeric, se obține:
$$U = \frac{(6,626)^2 \cdot 10^{-68}}{4 \cdot 9 \cdot 10^{-20} \cdot 2 \cdot 1,6 \cdot 10^{-19} \cdot 9,1 \cdot 10^{-31}} = 0,0419 \cdot 10^2 \approx 4,2 \text{ V}.$$

Probleme propuse

- 1. Tensiunea de accelerare a electronilor într-un dispozitiv Davisson-Germer este U = 100 V. Să se determine:
 - a) lungimea de undă de Broglie asociată electronilor care se mișcă nerelativist;
 - b) energia și impulsul unui foton care ar avea aceeași lungime de undă.

R: a)
$$1,22\cdot10^{-10}$$
 m; b) $16,2\cdot10^{-16}$ J; $5,41\cdot10^{-24}$ kg · ms⁻¹.

2. Electronii sunt supuși unei tensiuni de accelerare $U = 3.02 \cdot 10^4$ V. Care este lungimea de undă de Broglie asociată acestor electroni care se mișcă nerelativist?

R: 70 nm.

3. Să se calculeze lungimea de undă de Broglie pentru un electron și pentru un atom de hidrogen ($m_{\rm H}=1,008\cdot 1,66\cdot 10^{-27}~{\rm kg}$), știind că energia cinetică a fiecărei particule este de 100 eV.

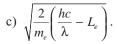
R: 1.22 Å. 0.0285 Å.

4. Să se calculeze lungimea de unua de E=0.00 cinetică este egală cu energia de repaus a electronului ($m_p = 1,66 \cdot 10^{-27} \text{ kg}$). $\mathbf{R} \approx 4 \cdot 10^{-4} \text{ Å}$. 4. Să se calculeze lungimea de undă de Broglie a unui proton, știind că energia lui

5. Să se determine viteza și energia cinetică pentru un electron și un neutron, știind că lungimile lor de undă de Broglie sunt egale cu 1 Å.

R: 7252 km/s; 3,94 km/s; 149 eV; 0,081 eV.

Test recapitulativ


- 1. Care dintre relații nu exprimă impulsul fotonului?
- a) $\frac{hv}{a}$;

b) $\frac{hv}{2}$;

- c) $\frac{h}{\lambda}$.
- 2. Dacă se exprimă energia unui foton în keV și lungimea de undă în Å, este îndeplinită relația E_f [keV] = 12,4/ λ [Å]?
- 3. Ce semnificație are panta dreptei din reprezentarea grafică alăturată? Diferă panta pentru diferite metale?
- **4.** Lucrul mecanic de extracție pentru un metal este L_{ρ} . Dacă lungimea de undă a radiației incidente pe acest metal este λ , fotoelectronii emişi au viteza:

b)
$$\sqrt{\frac{2}{m_e} \left(L_e - \frac{hc}{\lambda} \right)}$$
;

- 5. Ce deosebeşte efectul Compton de efectul fotoelectric?
- 6. Pentru ce substanțe pot fi considerați electronii ca fiind liberi?

- 7. Calculați lungimea de undă Compton, Λ, pentru un proton.
- 8. Calculați variația maximă a lungimilor de undă $(\Delta\lambda)_{max}$ ($\theta = 180^{\circ}$ fotonul incident își schimbă sensul de deplasare) pentru împrăștierea fotonilor pe electroni liberi și pe protoni.
- 9. Un foton cu energia de 100 keV suferă o împrăștiere Compton pe un electron liber sub unghiul de 90°. Energia fotonului împrăștiat este:
 - a) 80 keV; b) 87 keV; c) 84 keV.
 - 10. În ce constă ipoteza lui de Broglie?
 - 11. Expresia lungimii de undă de Broglie $\lambda_{_{\rm B}}$ în cazul nerelativist este:

a)
$$\frac{h}{\sqrt{2m_e U}}$$
;

b)
$$\frac{hc}{\sqrt{2em_e U}}$$
;

c)
$$\frac{h}{\sqrt{2em_e U}}$$
.

- 12. Pe o celulă fotoelectrică se aplică o tensiune de frânare U_f = 1,5 V. Lungimea de undă de Broglie a fotoelectronului emis este:
 - a) 1 nm;

b) 1,5 nm;

- c) 0,9 nm.
- 13. Ce pune în evidență experimentul Davisson-Germer?
- 14. Într-o experiență de difracție de electroni, un fascicul este accelerat de o tensiune constantă U=15 V. Distanța dintre două plane reticulare ale cristalului este d=2,33 Å. Unghiul făcut de direcția fasciculului difractat cu suprafața cristalului corespunzătoare maximului de ordinul întâi este:
 - a) 30°;

b) 42°52';

c) 40°30'.

Fizică atomică

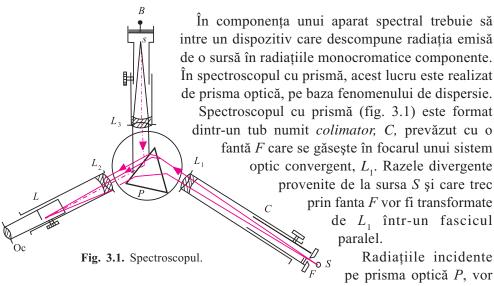
- 3.1. Spectre
 - 3.1.1. Spectroscopul cu prismă
- 3.2. Experimentul Rutherford.

Modelul planetar al atomului

- 3.2.1. Experimental Rutherford
- 3.2.2. Modelul planetar al atomului
- 3.3. Modelul Bohr
 - 3.3.1. Cuantificarea distanțelor electronului față de nucleu (r_n) , a vitezelor lui pe orbita circulară (v_n) , a impulsului (p_n) și a energiei totale (E_n)
 - 3.3.2. Seriile spectrale ale hidrogenului și ale atomilor hidrogenoizi
- 3.4. Experimentul Franck-Hertz
- 3.5. Atomul cu mai mulți electroni*
- 3.6. Radiațiile X
- 3.7. Efectul LASER*

^{*} Teme destinate claselor cu 3 ore pe săptămână la disciplina Fizică.

3


Fizica atomică

3.1. Spectre

În general, prin *spectru* se înțelege un ansamblu discret sau continuu de valori pe care le poate lua o anumită mărime, în particular – componentele monocromatice ale unei radiații electromagnetice.

Pentru studiul spectrelor se utilizează un instrument care descompune radiația electromagnetică complexă în componentele sale monocromatice numit *spectroscop*.

3.1.1. Spectroscopul cu prismă

fi dispersate de aceasta sub diferite unghiuri. Aceste fascicule vor fi focalizate de obiectivul L_2 de la capătul lunetei L, în planul focal al obiectivului.

În ocularul lunetei mai intră fasciculul de lumină reflectat pe fața prismei. Acest fascicul provine de la un alt colimator care proiectează imaginea unei riglete micrometrice s, iluminate de becul B. Imaginile fantei corespunzătoare diferitelor radiații monocromatice reprezintă liniile spectrale observate cu ajutorul ocularului, care joacă rol de lupă.

Dacă în planul focal al obiectivului L_2 se așază o placă fotografică, aparatul spectral se numește *spectrograf*.

În aparatele spectrale, prisma și lentilele sunt din sticlă pentru domeniul vizibil, din cuarț pentru ultraviolet iar pentru infraroșu, din materiale transparente pentru aceste radiații, ca monocristalul din clorură de sodiu.

Spectrele pot fi continue și discontinue.

Setul de unde electromagnetice de diferite lungimi de undă se împarte în spectre de emisie și spectre de absorbție.

Spectrele de emisie caracterizează substanța emițătoare de lumină, iar cele de absorbție, substanță absorbantă.

În funcție de natura sursei emitente de radiații, spectrele de emisie pot fi:

- continue;
- discontinue, de: linii;
 - bandă.

În funcție de sistemul de particule studiat, spectrele pot fi atomice și moleculare.

1. Spectre continue de emisie

Lumina emisă de toate corpurile solide şi lichide incandescente (filamentul unei lămpi, cărbunele dintr-un arc electric, metalul topit în cuptoarele din metalurgie ş.a.) conține o multitudine de radiații spectrale suprapuse, având lungimi de undă foarte apropiate. Deci, corpurile solide sau lichide aduse la incandescență emit un spectru continuu, o succesiune continuă de culori: roşu, portocaliu, galben, verde, albastru, indigo şi violet (planşa I, de la sfârşitul cărții, spectrul 1).

Dacă încălzim, de exemplu, filamentul de wolfram al unui bec, putem observa cu ochiul liber succesiunea coloritului diferit al filamentului în funcție de temperatură.

Astfel, la 700° C – roşu închis, la 1000° C – roşu aprins, la 1200° C – portocaliu aprins, la 1300° C – alb și la 1400° C – alb strălucitor.

Soarele şi celelalte stele dau un spectru continuu care depinde de temperatura de la suprafața lor.

Astfel, stelele pot fi clasificate după temperatura suprafeței lor, în:

- stele reci, practic invizibile, cu temperatura de 1000°C;
- stele roșii, cu temperatura de 2500°C;
- stele galbene (Soarele), cu temperatura de 6000°C;
- stele albe (Sirius), cu temperatura de 10000°C;
- stele albastre, cu temperatura cuprinsă între 25000 și 30000°C.

Spectrul Soarelui (planșa I, spectrul 2) are un spectru brăzdat de linii întunecate datorate absorbției radiațiilor de către atmosfera solară și atmosfera terestră.

2. Spectre discontinue de emisie

Gazele din tuburile de descărcare (vapori de mercur, sodiu, potasiu ș.a.) emit spectre discontinue. Aceste spectre sunt de două feluri: *spectre de linii* și *spectre de bandă*.

Spectrele de linii se prezintă sub forma unor linii strălucitoare de diferite culori, pe un fond negru (planșa I, spectrele 3, 4, 5).

Ele sunt emise de substanțele gazoase aflate în stare atomică.

Spectrele de bandă sunt asemănătoare celor de linii, dar liniile sunt grupate în benzi (planșa I, spectrul 6). Aceste spectre sunt emise de substanțele gazoase aflate în stare moleculară (H_2, O_2, N_2) .

Înmuind un fir de platină într-o soluție de NaCl și introducându-l în flacăra unui bec Bunsen, flacăra ia aspectul caracteristic fiecărui metal: galben pentru Na, roșu purpuriu pentru K (spectrele 4 și 5 din planșa I).

3. Spectre de absorbție

Dacă radiațiile emise de o sursă luminoasă, care dă un spectru continuu, traversează un gaz aflat la o temperatură mai joasă decât temperatura sursei, o soluție lichidă sau o sticlă colorată, se obține un spectru de absorbție. Un asemenea spectru se prezintă ca un spectru continuu brăzdat de linii sau de benzi întunecate.

Culoarea unei substanțe transparente este dată de suprapunerea radiațiilor care nu au fost absorbite.

De exemplu, dacă se macerează frunze de spanac în alcool sau acetonă şi lichidul obținut se filtrează, soluția conține clorofilă.

Spectrul de absorbție (planșa I, spectrul 7) prezintă benzi întunecate în domeniul roșu, albastru și violet. După cum se observă din spectru, radiațiile din centrul spectrului sunt mai puțin absorbite și determină culoarea verde a clorofilei.

Din studiile efectuate asupra spectrelor de emisie și de absorbție, Kirchhoff a dat o lege care îi poartă numele: *fiecare substanță absoarbe acele radiații pe care le poate emite în aceleași condiții de temperatură și presiune.*

Fiecare atom, ion sau moleculă are un spectru de emisie și de absorbție care îi este caracteristic.

Liniile întunecate din spectrul solar corespund elementelor care se găsesc în coroana solară și care absorb radiațiile emise din interiorul stelei.

Spectrele atomice mai pot fi împărțite în: spectre optice și spectre de radiații X. Spectrele optice se referă la tranzițiile electronilor de valență din atom. Orice element chimic este caracterizat de un spectru de emisie format dintr-o succesiune de linii spectrale. Fiecare linie spectrală apare ca rezultat al tranziției radiative a atomului respectiv de pe un nivel energetic superior, de energie E_i , pe un nivel energetic inferior, de energie E_f

Spectrele optice conțin radiații din domeniile vizibil, ultraviolet și infraroșu. Excitarea electronilor aflați pe păturile interioare ale atomilor necesită o energie mult mai mare decât excitarea electronilor aflați pe păturile exterioare. Prin

trecerea acestor electroni din stările excitate în starea fundamentală se emit radiații cu lungimi de undă foarte mici, denumite radiații X.

3.2. Experimentul Rutherford. Modelul planetar al atomului

Atomul este cea mai mică particulă a unui element care păstrează toate caracteristicile elementului respectiv.

Având dimensiuni mici, nu-l putem studia direct și folosim "sonde" de mărime atomică sau subatomică.

3.2.1. Experimentul Rutherford

Fizicianul englez Ernest Rutherford (1871–1937) a constatat că particulele alfa (α), emise de o sursă radioactivă (poloniu), trec printr-o foiță subțire de aur (0,1 μ m), iar radiația α poate fi detectată de un ecran fluorescent sub orice unghi. Majoritatea particulelor alfa sunt slab deviate, numărul particulelor deviate la unghiuri mari (15° și uneori 180°, fiind practic reflectate) este foarte mic (o particulă din 10 000).

Pentru a interpreta rezultatele acestui experiment, trebuie să ținem seama de faptul că, particulele α sunt nuclee de heliu (He), au o masă de circa 7000 de ori mai mare decât masa electronului și au sarcina pozitivă +2e.

Prin urmare, particula α nu poate fi deviată de un electron, ci numai de o particulă cu masă mare și sarcină pozitivă.

Singura explicație posibilă pentru numărul mic de particule deviate la unghiuri mari este că sarcina pozitivă este concentrată într-o regiune extrem de mică din volumul atomului de aur.

Simularea experimentului

Putem folosi un generator cu bandă, încărcat (Van der Graaf). Se metalizează (se înveleşte în staniol) o minge de ping-pong şi se suspendă de un fir lung de nailon (3–5 m), de plafon. În poziția de repaus, centrele celor două sfere, a generatorului și a mingii, sunt pe aceeași direcție. Printroscurtă atingere cu sfera generatorului, mingea este încărcată și respinsă de aceasta. Apoi, cu ajutorul unei bare izolatoare, îndepărtăm pendulul de generator și îl aruncăm cu viteză mare spre el sau pe lângă el. Mingea va fi deviată, putând urma o traiectorie hiperbolică (fig. 3.2) sau – în cazul vitezelor mici – eliptică ori circulară.

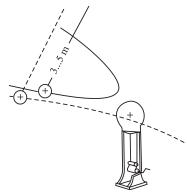


Fig. 3.2. Simularea experimentului lui Rutherford.

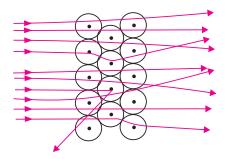
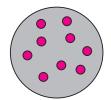


Fig. 3.3. Reprezentare schematică a devierii particulelor α pe nucleele atomice ale unei foițe.

În urma experimentului, Rutherford a tras concluzia că aproape *întreaga masă a atomului* și *sarcina sa pozitivă* sunt concentrate într-un *nucleu al atomului*, de diametru mai mic decât 10^{-14} – 10^{-15} m, diametrul atomului fiind 10^{-9} – 10^{-10} m.

Așadar, cea mai mare parte a spațiului ocupat de un atom este *lipsit de substanță* sau, se mai obișnuiește să se spună, atomul este mai mult "gol" decât "plin". Dacă ne închipuim nucleul atomic mărit la dimensi-


unile sferei unui generator cu bandă (30 cm), corespunzător, diametrul atomic este de 30 km. Evident, particulele α pot trece pe lângă câteva mii de nuclee fără a suferi devieri esențiale (fig. 3.3).

Modelul atomic este un concept structural, constatat experimental. Se cunosc:

- modele atomice precuantice (Thomson, Rutherford);
- modele atomice cuantice (Bohr).

Modelul lui Thomson este un model static, constând dintr-o sferă relativ mare, de sarcină pozitivă, cu un diametru de aproximativ $2 \text{ sau } 3 \cdot 10^{-10} \text{ m}$, în care sunt scufundați electronii, ca "stafidele în cozonac" (fig. 3.3).

Acest model a fost infirmat de experimentul Rutherford. Dacă sarcina ar fi fost distribuită uniform în întregul volum al atomului, o mulțime de particule α ar fi fost deviate.

Fig. 3.3. Modelul atomic al lui Thomson.

Acest model, pe lângă altele, nu poate explica structura de linii a spectrelor atomilor.

3.2.2. Modelul planetar al atomului

Conform modelului Rutherford, atomul are o structură asemănătoare sistemului solar. Întreaga masă și sarcină pozitivă ale atomului sunt concentrate într-un nucleu cu dimensiuni mult mai mici ($\sim 10^{-15}$ m), decât ale atomului ($\sim 10^{-10}$ m), electronii rotindu-se în jurul acestuia pe orbite circulare, forța de atracție dintre electroni și nucleu fiind de natură electrică).

Particulele subatomice sunt:

- electronul, încărcat negativ;
- protonul, încărcat pozitiv;
- neutronul, neutru.

Sarcina negativă a electronului este egală în modul cu sarcina pozitivă a protonului. În toți atomii, particulele subatomice sunt așezate după aceeași regulă generală: protonii și neutronii formează un ansamblu compact numit *nucleu*,

care are o sarcină pozitivă. Diametrul nucleului este de aproximativ 10⁻¹⁴ m. În jurul nucleului, la distante relativ mari fată de el, se află electronii, în număr egal cu numărul protonilor.

Deci atomul, ca întreg, este neutru din punct de vedre electric, adică suma sarcinilor pozitive ale nucleului este egală cu suma sarcinilor negative ale electronilor.

Dacă se extrag unul sau mai mulți electroni dintr-un atom, particula care rămâne se numește ion pozitiv. Dacă atomul câștigă unul sau mai mulți electroni, particula se numește ion negativ. Acest proces, de pierdere sau de câștigare de electroni, se numește ionizare.

Electronii sunt reținuți de nucleu prin forțe de atracție electrostatice (coulombiene) ce acționează ca forțe centripete.

• Conform modelului planetar, cel mai simplu sistem atomic este atomul de hidrogen, format dintr-un singur electron, care se mişcă în câmp coulombian, și un singur proton (fig. 3.4).

Să exprimăm energia electronului, considerând că se mișcă pe o orbită circulară. Energia totală E_{t} este egală cu energia cinetică E_c plus energia potențială E_p :

$$E_t = E_c + E_p$$
.

 $E_{_{t}}=E_{_{c}}+E_{_{p}}. \label{eq:energy}$ Aplicăm legea II-a a lui Newton:

$$F = ma$$
.

Forța care imprimă electronului de masă m accelerația

centripetă $\frac{v^2}{r}$ este forța coulombiană $F_c = \frac{1}{4\pi\varepsilon} \frac{e^2}{r^2}$,

deci:

$$\overrightarrow{F_n}$$

Fig. 3.4. Mișcarea electronului în jurul nucleului, conform modelului planetar.

$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = \frac{mv^2}{r} \,. \tag{3.1}$$

Înmulțind relația (3.1) cu $\frac{r}{2}$ obținem expresia energiei cinetice a electronului care se mişcă pe orbita circulară de rază r:

$$E_c = \frac{mv^2}{2} = \frac{e^2}{8\pi\epsilon_0 r} \,. \tag{3.2}$$

Lucrul mecanic efectuat de forța coulombiană pentru a deplasa electronul pe o distanță r este:

$$L = F_c \cdot r = \frac{e^2}{4\pi\epsilon_0 r^2} r = \frac{e^2}{4\pi\epsilon_0 r} = -E_p.$$

Deci:
$$E_p = \frac{e^2}{4\pi\epsilon_0 r}.$$
 (3.3)

Expresia energiei totale a electronului, în modelul planetar, este:

$$E_t = -\frac{e^2}{8\pi\epsilon_0 r}. ag{3.4}$$

În acest model se consideră valabile legile mecanicii clasice și, prin urmare, energia totală poate lua orice valoare negativă cuprinsă între 0 și $-\infty$.

Se observă că:
$$E_p = -2E_c$$
; $E_t = -E_c = \frac{E_p}{2}$.

Deficiențele modelului planetar Rutherford

- Cea mai importantă deficiență este cea a instabilității atomului. Un purtător de sarcină în mișcare accelerată emite radiație. Emisia de radiație micșorează energia totală a electronului; raza lui va scădea și, în final, el va cădea pe nucleu (în 10⁻¹² s). Ori experiența confirmă stabilitatea în timp a atomilor.
- Imposibilitatea explicării spectrelor de emisie și absorbție, observate experimental, pe baza acestui model au condus la căutarea unui model capabil să explice faptele constatate experimental.

3.3. Modelul Bohr

Ideea corectă a modelului Rutherford, adică existența unui nucleu atomic în care este concentrată aproape toată masa atomului și toată sarcina lui pozitivă, a fost preluată în modelele atomice propuse ulterior.

În conceptul lui Bohr, un atom este un sistem solar în miniatură, cu forțe electrice în loc de forțe gravitaționale. Nucleul încărcat pozitiv corespunde Soarelui, iar electronii care se mișcă în jurul nucleului, sub acțiunea forțelor electrice de atracție dintre ei și nucleu, corespund planetelor care se rotesc în jurul Soarelui sub influența atracției gravitaționale.

Modelul atomic propus de Bohr (1913), se bazează pe *postulatele lui Bohr*. În fizica clasică, energia unui sistem poate varia în mod continuu, adică poate lua orice valori.

Electronii, având o masă mai mică decât a atomilor, nu vor pierde, practic, energie la o ciocnire, ci vor fi doar *împrăștiați elastic*. Dacă, însă, electronul va suferi o *ciocnire inelastică* cu un atom, atunci el va pierde energie și, în consecință, viteza lui va scădea. Această energie se transferă atomului ciocnit care trece într-o *stare excitată*. Experimental se constată că atomul nu poate să primească energie de orice valoare, ci numai niște valori bine determinate. *Atomul poate să aibă numai anumite stări (discrete) de energie*.

Cuanta de radiație este unitatea structurală de bază a câmpurilor (de exemplu, fotonul – pentru câmpul electromagnetic), care poate fi emisă sau absorbită de un sistem fizic (molecular, atomic, nuclear etc.).

Energia unei cuante de radiație este denumită și cuantă de energie.

Cuantificare este acel procedeu al mecanicii cuantice constând în impunerea condiției ca mărimile fizice (de exemplu, energie, impuls, moment cinetic etc.) care caracterizează sistemul de particule să ia doar valori discrete.

Experimental s-a observat că, pe măsură ce crește energia de excitare, crește și intensitatea radiației emise, iar simultan crește și frecvența radiației emise, raportul energie—frecvență rămânând constant:

$$\frac{E}{v}$$
 = constant.

Această constantă se numește *constanta lui Planck* și se notează cu *h (se mai numește* și *cuantă de acțiune*).

$$h = 6,626075 \cdot 10^{-34} \text{ J} \cdot \text{s}.$$

Se poate scrie, deci, că energia radiațiilor emise de atomii care se dezexcită este proporțională cu frecvența:

$$E = hv. (3.5)$$

În conceperea modelului cuantificat, Bohr a emis două postulate, cunoscute sub numele de *postulatele lui Bohr*.

I. Atomii și sistemele atomice se pot găsi timp îndelungat numai în stări bine determinate, numite stări staționare, în care nu emit și nu absorb energie.

Energia sistemului atomic în aceste stări este cuantificată, adică ia valori care alcătuiesc un șir discontinuu: $E_1, E_2, ..., E_n$.

II. Atomii emit sau absorb radiație electromagnetică numai la trecerea dintr-o stare staționară m, caracterizată de energia E_m , în altă stare staționară, n, caracterizată de energia E_m .

Frecvența radiației emise sau absorbite într-o asemenea tranziție este dată de relația:

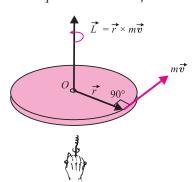
$$hv_{mn} = E_m - E_n,$$

unde h este constanta lui Planck. Acest postulat explică spectrele de linii ale radiațiilor emise de atomii de hidrogen.

3.3.1. Cuantificarea distanțelor electronului față de nucleu (r_n) , a vitezelor lui pe orbita circulară (v_n) , a impulsului (p_n) și a energiei totale (E_n)

Aceste mărimi pot fi obținute considerând că forța coulombiană este o forță de natură centripetă:

$$\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{mv^2}{r} \tag{3.6}$$


și că electronului i se poate asocia o undă cu lungime de undă $\lambda_B = \frac{h}{p}$.

Se admite că pot exista numai acele orbite ale electronului în atom pentru care este satisfăcută condiția existenței undelor de Broglie staționare. Pentru aceasta se impune ca lungimea orbitei circulare să cuprindă un număr întreg de lungimi de undă:

$$2\pi r = n\lambda_B = \frac{nh}{mv}, \text{ sau:}$$

$$mvr = n\frac{h}{2\pi} = n\overline{h}, (n = 1, 2, 3, ...),$$
(3.7)

adică exact condiția de cuantificare a momentului cinetic al mișcării electronului pe o orbită staționară.

Fig. 3.5. Momentul cinetic al punctului material în mișcarea circulară.

Analogul impulsului în mișcarea de rotație este mărimea fizică moment cinetic, \vec{L} (sau moment al impulsului).

Momentul cinetic se definește ca produsul vectorial dintre vectorul de poziție \vec{r} al originii vectorului impuls, față de centrul de rotație, și impulsul punctului material $\vec{p} = m\vec{v}$.

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m \vec{v}. \tag{3.8}$$

Momentul cinetic este un vector al cărui modul este: $L = rp \sin(\vec{r}, m\vec{v})$.

În mişcarea circulară
$$\vec{r} \perp m\vec{v}$$
 și $L = rmv$. (3.9)

Direcția este perpendiculară pe planul vectorilor \vec{r} și $m\vec{v}$, iar sensul este dat de sensul de rotație al unui burghiu rotit în sensul mișcării (fig. 3.5).

În SI, momentul cinetic se măsoară în kg \cdot m²s⁻¹ = J \cdot s.

Postulatele lui Bohr nu decurg din niciun principiu al fizicii clasice, ele se bazează doar pe fizică cuantică.

Conform condiției de cuantificare a lui Bohr, electronului i se permite să se miște în jurul nucleului doar pe acele orbite pentru care momentul cinetic este un multiplu întreg de $\frac{h}{2\pi}$.

Din relațiile (3.6) și (3.7) putem deduce expresiile cuantificate ale lui r_n , v_n , p_n și E_n :

$$\frac{e^2}{8\pi\varepsilon_0 r^2} = \frac{mv^2}{r} \rightarrow v^2 = \frac{e^2}{4\pi\varepsilon_0 rm};$$

$$rmv = n\frac{h}{2\pi} \rightarrow v^2 = \frac{n^2h^2}{4\pi^2m^2r^2}.$$

Din cele două exprimări ale mărimii v^2 obținem: $\frac{e^2}{4\pi\epsilon_0 r} = \frac{mn^2h^2}{4\pi m^2r^2}$, ceea ce implică:

$$r_n = \frac{\varepsilon_0 h^2}{\pi m e^2} n^2. \tag{3.10}$$

Din a doua exprimare a mărimii v^2 rezultă:

$$\boldsymbol{v}_{n} = \frac{nh}{2\pi m r_{n}} \rightarrow \left[\boldsymbol{v}_{n} = \frac{e^{2}}{2\varepsilon_{0}h} \frac{1}{n}\right]$$
(3.11)

şi:

$$p_n = m v_n \to p_n = \frac{me^2}{2\varepsilon_0 h} \frac{1}{n}. \tag{3.12}$$

Folosind relațiile (3.4) și (3.10) obținem:

$$E_{n} = -\frac{e^{2}}{8\pi\varepsilon_{0}r_{n}}; \qquad E_{n} = -\frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}}\frac{1}{n^{2}}.$$
 (313)

Să aplicăm expresiile deduse atomului de hidrogen ¹₁H.

Pentru n = 1, raza primei orbite Bohr este:

$$r_1 = \frac{\varepsilon_0 h^2}{\pi m e^2} \text{ iar } r_n = r_1 n^2$$
 (3.14)

deci orbitele neradiante permise au razele r_1 , $4r_1$, $9r_1$ etc.

Cunoscând: $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$, $h = 6.62 \cdot 10^{-34} \text{ J} \cdot \text{s}$, $m = 9.11 \cdot 10^{-31} \text{ kg}$, $e = 1.60 \cdot 10^{-19} \text{ C}$ obținem: $r_1 = 0.53 \cdot 10^{-10} \text{ m}$.

Această valoare este în bună concordanță cu diametrele atomice estimate prin alte metode.

Conform relației (3.14), distanța dintre două orbite consecutive crește pe măsură ce ne îndepărtăm de nucleu. Orice sistem fizic tinde spre starea de echilibru stabil, care corespunde celei mai joase energii.

Întrucât energia sistemului nucleu-electron este negativă, starea energetică cea mai joasă se realizează când această energie are valoarea absolută cea mai mare, adică pentru n = 1.

Starea de energie minimă se numește stare fundamentală sau normală.

Pentru hidrogen, din relația (3.13) se obține:

$$E_1 = -\frac{me^4}{8h^2\epsilon_0^2} = -13.6 \text{ eV}.$$
 (3.15)

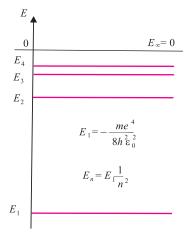


Fig. 3.6. Schema nivelurilor de energie ale atomului de hidrogen.

În figura 3.6, liniile orizontale reprezintă valorile energiei totale și se mai numesc *niveluri de energie*.

Am ales originea în E=0, adică energia pentru numere cuantice foarte mari, când electronul este depărtat de nucleu, pierzând legătura cu acesta – procesul de ionizare.

Deasupra valorii E=0, pot fi reprezentate valorile pozitive ale energiei, care corespund mişcării libere a electronului și care nu sunt cuantificate, fiind posibilă orice valoare a energiei. Energiile negative (ce descriu *stările legate* ale electronului în atom) sunt reprezentate sub nivelul E=0. Se observă că nivelurile cuantificate se strâng spre valoarea E=0.

$$E_n = \frac{E_1}{n^2}. (3.16)$$

Relațiile deduse sunt aplicabile atomului de hidrogen și atomilor hidrogenoizi (cu un singur electron): heliu o dată ionizat He⁺, litiu de două ori ionizat Li⁺⁺, beriliu de trei ori ionizat Be⁺⁺⁺ ș.a.m.d.

În cazul generalizat pentru atomii hidrogenoizi:

$$E_n = -\frac{mZ^2 e^4}{8h^2 \varepsilon_0^2},\tag{3.17}$$

adică:

$$E_n = -13.6 \frac{Z^2}{n^2} \text{ eV}$$
 (3.18)

(Z este numărul atomic egal cu numărul sarcinilor pozitive ale nucleului, egal și cu numărul de electroni din atomul neutru; el reprezintă numărul de ordine din tabelul periodic al elementelor).

3.3.2. Seriile spectrale ale hidrogenului şi ale atomilor hidrogenoizi

Prin absorbția unui foton, electronul poate trece din starea fundamentală într-o stare excitată.

Stările atomice excitate nu sunt stabile.

Un atom se dezexcită în circa 10⁻⁸ s, energia înmagazinată fiind radiată sub formă de energie a unei unde electromagnetice de frecvență bine determinată, acoperind întregul domeniu spectral, de la infraroșu până la ultraviolet. Cheia înțelegerii spectrelor atomice este conceptul de nivel atomic de energie.

Folosind postulatul al II-lea al lui Bohr, obținem energia fotonului emis sau absorbit la trecerea de la o stare staționară la alta.

Vom studia *spectrele de emisie*, adică trecerea electronului dintr-o stare excitată în starea de energie mai joasă, când se emite un foton de energie *h*v (prin dezexcitare).

De asemenea, ne vom referi la spectrul de emisie al atomului de hidrogen (H), care este un spectru de linii.

Fie n_i – numărul cuantic al unei stări excitate oarecare – și n_f – numărul cuantic al stării de energie mai joasă, pe care se întoarce electronul după procesul de emisie.

Atunci, energia inițială este:

$$E_i = -\frac{me^4}{8\varepsilon_0^2 h^2} \frac{1}{n_i^2}$$

și energia finală este:

$$E_f = -\frac{me^4}{8\epsilon_0^2 h^2} \frac{1}{n_f^2}$$
.

Energia fotonului emis, hv, va fi egală cu:

$$E_i - E_f = hv = -\frac{me^4}{8\varepsilon_0^2 h^2} \frac{1}{n_i^2} + \frac{me^4}{8\varepsilon_0^2 h^2} \frac{1}{n_f^2}.$$

Frecvența liniei emise, v, va fi:

$$v = \frac{me^4}{8\varepsilon_0^2 h^3} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right). \tag{3.19}$$

Introducem notația:

$$\widetilde{\mathbf{v}} = \frac{\mathbf{v}}{c} = \frac{1}{cT} = \frac{1}{\lambda},$$

unde λ este lungimea de undă ($\lambda = cT$ – drumul parcurs de unda electromagnetică cu viteza c într-o perioadă);

 \tilde{v} se numește *număr de undă* și reprezintă numărul de lungimi de undă cuprinse în intervalul unitate:

$$\widetilde{v} = \frac{me^4}{8\varepsilon_0^2 h^3 c} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right). \tag{3.20}$$

Mărimea:

$$\frac{me^4}{8h^3\epsilon_0^2c},\tag{3.21}$$

este constanta lui Rydberg (notată de unii autori cu Ry) și are valoarea $R = 1.097373 \cdot 10^7 \text{ m}^{-1}$.

Cu ajutorul acestei constante, expresia energiei cuantificate a electronului pe un nivel energetic al atomului este:

$$E_n = -\frac{Rch}{n^2} \,. \tag{3.22}$$

Grupul de linii spectrale care are același n_f formează o *serie spectrală*. Din relațiile 3.19 și 3.20, rezultă că pentru $n_i \to \infty$ numărul de undă este

maxim, având valoarea $\frac{R}{n^2}$, numită *limita seriei*.

Inversele lungimilor de undă ale liniilor spectrale emise de atomul de hidrogen sunt date de ecuatia:

$$\widetilde{\mathbf{v}} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right),\tag{3.23}$$

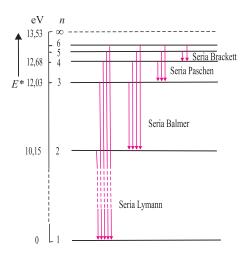
iar pentru atomii hidrogenoizi, având sarcina Ze și un singur electron, de ecuația:

$$\widetilde{\mathbf{v}} = RZ^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right).$$
 (3.24)

Tabelul 3.1.

Denumirea seriei spectrale	n_f	n_{i}	Domeniul spectral	Limita seriei
Lyman	1	2, 3,	ultraviolet	R
Balmer	2	3, 4,	vizibil	R/4
Paschen	3	4, 5,	infraroșu	R/9
Brackett	4	5, 6,	infraroșu	R/16
Pfund	5	6, 7,	infraroşu îndepărtat	R/25

Cu mult înainte ca Bohr să elaboreze modelul atomic pentru hidrogen, studiind liniile din vizibil ale atomului de hidrogen, Balmer a observat că lungimile de undă ale liniilor spectrale emise respectă anumite regularități.


Relația empirică a lui Balmer, pentru calculul lungimilor de undă, a fost "rearanjată" de Rydberg sub forma:

$$\widetilde{\mathbf{v}} = \frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right),$$

în care tot empiric a dat valoarea pentru *R* care coincide cu valoarea calculată din modelul atomic a lui Bohr.

Seriile spectrale ale hidrogenului, după numele descoperitorilor lor, sunt redate în tabelul 3.1.

Aceste tranziții sunt ilustrate în figura 3.7. Așa cum se vede în figură, tranziția se poate face direct sau în trepte. Numărul tranzițiilor posibile este egal cu

Fig. 3.7. Tranzițiile electronului în modelul Bohr al atomului de H.

numărul de combinări de câte două niveluri între cele n niveluri.

$$N = (n-1) + (n-2) + (n+3) + \dots + 2 + 1;$$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2} \implies 1 + 2 + \dots + n - 1 = \frac{(n-1)n}{2},$$
deci:
$$N = \frac{(n-1)n}{2}.$$
(3.25)

Aplicații ale spectroscopiei

- Spectroscopia constituie o metodă comodă, precisă şi rapidă în analiza chimică. Datorită analizei spectrale s-au descoperit elementele cesiu (Cs), taliu (Tl), indiu (In) şi galiu (Ga).
- Sursele moderne de iluminare ca tuburile cu descărcare electrică în vapori de sodiu sau mercur, lămpile fluorescente s-au realizat tot pe baza studiilor spectroscopice.
- Ceasurile atomice care au devenit etalon pentru timp. Reamintim că 1s = 9192631770 perioade asociate tranziției între două niveluri energetice ale cesiului 133.
- Cele mai marcante succese ale spectroscopiei s-au realizat în astronomie, în studiul temperaturii, compoziției, deplasării astrelor.

3.4. Experimentul Franck-Hertz

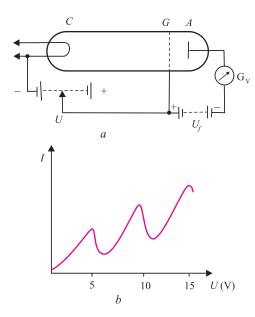


Fig. 3.8. Experimentul lui Franck și Hertz: a – schema instalației; b – intensitatea curentului în funcție de tensiunea de accelerare a electronilor.

Acest experiment a pus în evidență existența nivelurilor cuantificate ale atomilor.

Schema de principiu a experimentului este reprezentată în figura 3.8, *a.*

Într-un balon de sticlă, din care a fost scos aerul, au fost introduși vapori de mercur. În tub se găsesc: un catod C, care prin încălzire emite electroni, o grilă G și un anod A.

Între catodul C și grila G se aplică o tensiune de accelerare U a cărei mărime poate fi variată cu ajutorul unui potențiometru.

Între grila G și anodul A se aplică o tensiune de frânare U_r

La anodul A pot ajunge doar electronii care la ieşirea din grilă au energia cinetică mai mare decât $eU_f(E_c > eU_f)$.

Intensitatea acestui curent este măsurată de galvanometrul G_{v}

Odată cu creșterea tensiunii de accelerare, crește și intensitatea curentului. Înseamnă că, pentru aceste valori ale tensiunii de accelerare, electronii nu cedează energia cinetică atomilor de mercur. Ei suferă doar ciocniri elastice cu atomii de mercur care au o masă mult mai mare.

Când tensiunea atinge 4,9 V, se înregistrează o scădere bruscă a intensității curentului, fără ca aceasta să devină nulă. Înseamnă că la anod ajung mai puțini electroni; restul, suferind ciocniri inelastice cu atomii de mercur, își pierd din energia cinetică și nu mai pot străbate distanța dintre grilă și anod.

Crescând în continuare tensiunea de accelerare crește și intensitatea curentului, scăzând brusc când tensiunea atinge valoarea de 9,8 V. Același lucru se observă și la 14,7 V (fig. 3.8, b).

Explicația acestor minime periodice este următoarea: atunci când energia cinetică a electronului este egală cu 4,9 eV, electronul suferă ciocniri inelastice cu atomii de mercur, aceștia trecând din starea fundamentală într-o stare excitată.

Dacă atomul de mercur are niveluri de energie cuantificate el poate primi numai anumite cantități bine determinate de energie, corespunzătoare diferențelor dintre energiile nivelurilor energetice.

Ca urmare, energia cinetică a electronilor în timpul ciocnirii variază în cantități bine determinate.

Dacă experimentul se realizează cu vapori de sodiu se găsește că "porția" de energie este de 2,12 eV, iar pentru vaporii de potasiu, de 1,63 eV.

Experimentul a fost realizat înainte ca Bohr să elaboreze teoria sa referitoare la structura cuantificată a atomului.

3.5. Atomul cu mai mulți electroni*

Modelul lui Bohr nu descrie corect decât spectrul hidrogenului și al atomilor hidrogenoizi (He⁺, Li⁺⁺, Be⁺⁺⁺). Acești atomi sunt mai simpli, conținând un singur electron.

În cazul atomilor cu mai mult de un electron, problema devine mai complexă, întrucât fiecare electron interacționează nu numai cu nucleul, încărcat pozitiv, dar și cu ceilalti electroni.

În modelul lui Bohr, sistemul este format dintr-un nucleu şi un electron care se mişcă în jurul nucleului pe o *traiectorie circulară*. Așa cum s-a discutat în capitolul 2, pentru o particulă cuantică, căreia i se poate asocia o undă, nu putem vorbi despre traiectorie. Electronul nu se mişcă pe traiectorii bine determinate ci acoperă în timp o regiune a spațiului din jurul nucleului.

Pe de altă parte, în spectrele metalelor alcaline se constată abateri de la formulele seriilor spectrale.

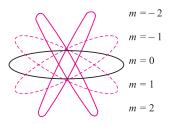
O extindere a modelului lui Bohr a fost introdusă de fizicianul Sommerfeld. Acest model modificat se numește *modelul atomic Bohr–Sommerfeld*.

În acest model orbitele se consideră eliptice, nucleul găsindu-se în unul dintre focare.

Toți electronii care au același număr cuantic principal n, se află, în medie, la aceeași distanță de nucleu, adică au aceeași energie.


Numărul cuantic principal n cuantifică valorile energiei pe care le poate avea electronul în atom.

Electronii care au același număr cuantic principal ocupă o *pătură* în jurul nucleului. Numărul cuantic principal, n, ia valori întregi pozitive: $n = 1, 2, 3, 4, 5, \ldots$ iar păturile corespunzătoare se notează: K, L, M, N, O, \ldots


În mișcarea sa pe o anumită orbită a păturii, electronul posedă un moment cinetic. Mecanica cuantică arată că pentru microparticule valorile momentului cinetic sunt cuantificate. Numărul întreg *l*, care *cuantifică valorile momentului cinetic*, se numește *număr cuantic orbital*.

Electronii care fac parte din aceeași pătură (au același număr cuantic principal n) și un anumit număr cuantic orbital l, formează o *subpătură* electronică. Numărul cuantic orbital l ia valorile: l = 0, 1, 2, 3, ..., (n-1) iar subpăturile corespunzătoare se notează: s, p, d, f, ...

Electronii dintr-o pătură se deosebesc prin momente cinetice diferite. Valoarea diferită a momentelor cinetice se reflectă în forma orbitei electronilor (fig. 3.9).

Fig. 3.9. Cele patru forme de orbite ale unui electron în stare cuantică n = 4, l = 0, 1, 2, 3.

Fig. 3.10. Orientările posibile ale orbitei unui electron 3d, în spațiu.

Electronii cu același număr cuantic principal, dar cu numărul cuantic orbital diferit, se mișcă pe orbite diferite, de aceeași lungime și care au aceeași axă mare.

Pentru valoarea limită a numărului cuantic orbital l = n - 1, orbita devine circulară.

Toți electronii dintr-o subpătură au aproape aceeași energie.

Momentul cinetic \vec{L} este un vector perpendicular pe planul mișcării. Mecanica cuantică stabilește că sunt cuantificate și mărimea și direcția momentului cinetic, de fapt orientarea spațială a momentului cinetic (adică a orbitelor electronului – fig. 3.10). Proiecțiile momentului cinetic orbital pe o direcție dată iau numai valori discrete. Axa în raport cu care se face cuantificarea este determinată de condițiile fizice externe în care se află atomul.

Dacă atomul se află într-un câmp magnetic de

inducție \vec{B} , atunci proiecțiile momentului cinetic orbital vor fi cuantificate pe direcția lui \vec{B} .

Numărul întreg care cuantifică proiecțiile momentului cinetic orbital pe o axă se numește număr cuantic magnetic orbital m_r

Pentru o valoare dată a lui l, numărul cuantic magnetic orbital m_l ia valorile:

$$m_l = -l, -(l-1), ..., 1, ..., (l-1), l,$$

așa cum este ilustrat și în figura 3.10.

Pentru o valoare dată a lui l, m_l ia (2l + 1) valori.

Cunoașterea acestor trei numere cuantice, n, l și m_l , a putut explica liniile spectrale mai complicate ale metalelor alcaline care au fost observate experimental. Modelul, însă, n-a putut explica existența dubleților din seriile spectrale, așa-numita "structură fină" a acestor linii. De exemplu, linia galbenă emisă de sodiu este formată din două linii cu lungimi de undă foarte apropiate.

În mecanica cuantică relativistă se introduce mărimea numită moment cinetic de $spin(\vec{S})$ ca o proprietate a particulelor elementare.

Cercetările teoretice și experimentale au arătat că în natură există două tipuri de particule: particule cu spin semiîntreg, care se numesc *fermioni* (electronii, protonii, neutronii) și particule cu spin întreg, care se numesc *bosoni* (fotonii, de exemplu).

Spinul \vec{S} este un vector paralel sau antiparalel cu momentul cinetic orbital.

Numărul care cuantifică proiecția vectorului spin pe o axă se numește număr cuantic magnetic de spin, m. Acesta ia valorile:

$$m_{s} = \pm 1/2$$
.

Deci starea electronului în atom este caracterizată de patru numere cuantice:

- numărul cuantic principal n = 1, 2, 3, ...;
- numărul cuantic orbital l = 0, 1, 2, ..., (n 1);
- numărul cuantic magnetic orbital $m_l = -l, \dots 0 \dots l$;
- numărul cuantic magnetic de spin $m_s = \pm \frac{1}{2}$.

Introducerea spinului explică structura de multiplet, adică de linii spectrale descompuse în linii mai fine – structura fină a liniilor spectrale.

Pentru particulele cu spin semiîntreg există *principiul de excluziune al lui Pauli:* Într-un sistem de particule identice (de exemplu, în ansamblul electronilor unui atom) nu pot exista două particule care să aibă toate cele patru numere cuantice identice.

Să calculăm numărul maxim de electroni dintr-un atom care au același număr cuantic principal n. Pentru o valoare dată a lui n, l ia valori (0, 1, ..., n-1). Fiecărei valori a lui l îi corespund (2l+1) valori ale numărului cuantic magnetic orbital m_l (deci unei subpături îi corespund 2l+1 posibilități de aranjare a electronilor și fiecărui m_l îi corespund cele două valori ale lui m_s . Conform principiului lui Pauli, în fiecare subpătură se pot găsi cel mult 2(2l+1) electroni, iar numărul maxim de electroni în fiecare pătură este:

$$N = \sum_{i=0}^{n-1} 2(2i+1) = 2[1+3+5+...+(2^{n}-1) = 2n^{2}.$$
 (3.26)

Subpăturile și păturile electronice care conțin numărul maxim admis de electroni se numesc complete sau ocupate și electronii sunt puternic legați. Atomii care au numai pături complete nici nu atrag și nici nu cedează ușor electroni. Așa se explică de ce atomii gazelor rare, atomii de He, Ne, Ar, Kr, Xe și Rn, sunt pasivi din punct de vedere chimic.

Modul de ocupare a diferitelor subpături din atom se notează prin trei simboluri: primul simbol este o cifră, care indică numărul cuantic principal n; al doilea simbol este o literă mică, ea indicând numărul cuantic orbital; al treilea este o cifră situată ca exponent și indică numărul de electroni din subpătură. De exemplu: $2p^6$ (n = 2; l = 1 și N = 6).

Așezarea electronilor în subpăturile electronice se face în ordinea creșterii energiei subpăturilor (fig. 3.11). Periodicitatea proprietăților chimice ale elementelor este determinată de periodicitatea numărului de electroni din pătura periferică.

Din figură se observă că pentru n = 3, după

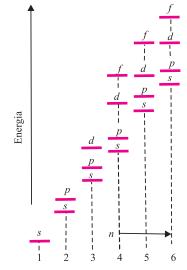


Fig. 3.11. Ordonarea energiilor electronilor într-un atom, corespunzătoare diferitelor stări caracterizate prin numerele cuantice n și l. Stările atomice sunt ocupate cu electroni în ordinea crescătoare a energiilor.

completarea subpăturii 3p, nu se completează subpătura 3d, ci începe completarea subpăturii 4s de energie mai mică decât 3d.

În tabelul I de la sfârșitul manualului, se dau configurațiile electronice ale tuturor elementelor.

3.6. Radiațiile X¹

Radiațiile X^1 sunt radiații de natură electromagnetică, cu lungime de undă mică, cuprinsă aproximativ între 10^{-12} și 10^{-9} m.

Energia radiațiilor X se emite sub formă de fotoni și este dată de relația E = hv. În unele condiții se manifestă ca o undă (fenomenul de difracție al razelor X pe cristale) în altele, ca o particulă (procesele de ciocnire elastică și inelastică).

Radiațiile X au fost observate prima oară de W.K. Rőntgen și s-au numit inițial raze Rőntgen.

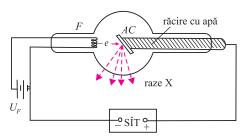


Fig. 3.12. Tub de raze X.

Radiațiile X pot fi obținute în tuburi de descărcare, ca în figura 3.12.

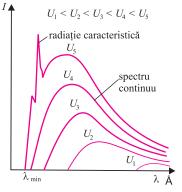
Catodul este un filament F încălzit prin trecerea unui curent produs de sursa cu tensiunea U_F . Anticatodul AC este format dintr-o placă metalică (de exemplu, wolfram). Între filament și anticatod se aplică o tensiune de accelerare de la sursa de înaltă tensiune (SÎT). Tubul este vidat, pentru ca

electronii să nu sufere ciocniri între filament și anticatod, păstrându-și energia obținută prin accelerare. Radiațiile X se generează la locul de impact al fasciculului cu anticatodul și sunt emise în unghiul solid 4π .

Au loc două tipuri de interacțiuni în urma cărora iau naștere radiațiile X.

Radiațiile X de frânare. Spectrul continuu

Electronii având energie cinetică mare, străbat învelişul electronic al atomilor metalului din care este făcut anticatodul. Ajungând în câmpul nucleului, ei sunt deviați de la direcția inițială și frânați, plecând cu o energie mai mică și emițând un foton. Electronul este cu atât mai puternic frânat cu cât trece mai aproape de nucleu, ceea ce face ca energia fotonului emis să fie mai mare.


În cazul în care frânarea este instantanee (electronul este oprit) întreaga lui energie cinetică se regăsește în fotonul emis. Prin frânare, energia cinetică a electronului se transformă parțial în radiație X și parțial în căldură, în urma repetatelor ciocniri cu atomii anticatodului, care se încălzește. Acest fapt impune răcirea anticatodului. Energia cinetică maximă a electronului este:

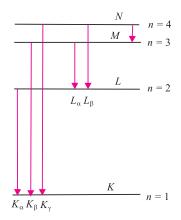
$$hv_{\text{max}} = eU \Rightarrow \lambda_{\text{min}} = \frac{hc}{eU}$$
 (3.27)

¹ Vezi şi http://en.wikipedia.org/wiki/X-ray.

Din relația 3.27 se vede că lungimea de undă minimă nu depinde de natura materialului anticatodului, ci numai de tensiunea de accelerare, *U*.

Fotonii emişi de un ansamblu de electroni frânați pot avea orice valoare a lungimii de undă între λ_{\min} și o valoare $\lambda > \lambda_{\min}$, care depinde de tensiunea de accelerare. Variația intensității I a radiațiilor X de frânare în funcție de lungimea de undă λ este dată în figura 3.13. Se observă că *spectrul* este *continuu*.

Radiații X caracteristice. Spectru de linii


Fig. 3.13. Spectre de raze X.

La valori mari ale tensiunii de accelerare, spectrul radiației X conține maxime pronunțate (v. fig. 3.13, pentru U_5) pentru λ apropiat de λ_{\min} . Pentru că aspectul acestor maxime depinde de natura anticatodului, aceste radiații se numesc *radiații caracteristice*.

Electronul incident, având energie mare, poate ioniza atomul din materialul anticatodului scoţând un electron de pe nivelele energetice apropiate de nucleu. Locul vacant va fi ocupat de un alt electron de pe un nivel energetic situat mai spre exterior. Deci atomul se stabilizează prin emisia unui foton, ca urmare a tranziţiei electronului de pe un nivel energetic caracterizat printr-un număr cuantic principal mai mare pe un nivel energetic cu număr cuantic principal mai mic.

Spectrul radiațiilor X caracteristice este un spectru de linii.

Numărul de undă \tilde{v} al unei asemenea tranziții este dat de *legea lui Moseley*:

Fig. 3.14. Tranzițiile electronului în modelul Bohr al atomului de H.

$$\frac{N}{M} \bigvee_{n=3}^{n=4} \qquad \widetilde{V} = \frac{1}{\lambda} = R(Z - \sigma)^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right), \tag{3.28}$$

unde n_1 este numărul cuantic principal al nivelului energetic pe care îl va ocupa electronul de pe nivelul energetic cu numărul cuantic $n_2 > n_1$, R este constanta lui Rydberg, iar Z este numărul atomic al atomilor din materialul anticatodului; σ se numește constantă de ecran și se determină experimental.

Dacă electronul este expulzat de pe nivelul K (n = 1), apar radiații X caracteristice prin tranzițiile electronilor de pe nivelurile L (n = 2), M (n = 3), N (n = 4) etc. pe nivelul K. Liniile spectrale corespunzătoare acestor radiații formează seria K $(K_{\alpha}, K_{\beta}, K_{\gamma})$ (fig. 3.14).

Proprietățile și aplicațiile radiațiilor X

Radiațiile X produc fluorescența unor substanțe, impresionează placa fotografică, datorită energiilor mari, trec prin straturi destul de groase de lemn

și de ebonită, prin lame metalice de densitate mică, sunt absorbite însă de plumb – care are densitate mare –, ionizează gazele prin care trec.

Radiațiile X sunt absorbite în mod diferit de către substanțe de densități diferite. Pe această proprietate se bazează efectuarea radioscopiilor și radiografiilor precum și metoda defectoscopiei – detectarea eventualelor porozități sau defecte ale metalelor și aliajelor.

Având energii mari, radiațiile X pot distruge țesuturile vii. Pe această proprietate se bazează radioterapia tumorilor maligne.

Pe baza fenomenului de difracție a radiațiilor X pe cristale, se poate determina constanta rețelei de difracție.

3.7. Efectul LASER^{1*}

Prin absorbția unei cuante de energie hv, atomul trece într-o stare excitată. Revenirea pe un nivel energetic inferior se poate realiza prin emisie spontană și prin emisie stimulată.

Atomul rămâne în stare excitată un timp foarte scurt ($\approx 10^{-8}$ s) după care trece spontan pe nivelul inferior, emițând un foton. Fenomenele sunt întâmplătoare și, prin urmare, între fazele radiațiilor emise de electronii de pe un același nivel excitat nu există nici o relație; atomul se comportă ca o sursă necoerentă. Energia fotonului emis este:

$$hv = E^* - E$$
,

unde E^* este energia stării excitate și E este energia stării fundamentale.

Dacă asupra sistemului atomic, aflat în stare excitată, acționează un foton cu frecvența egală cu cea necesară tranziției, mai apare un foton în urma tranziției. Fotonul stimulator și cel emis vor fi "în fază".

Emisia unei radiații electromagnetice de frecvență proprie atomului sub influența unei radiații de aceeași frecvență se numește *emisie stimulată sau indusă*.

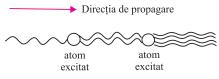


Fig. 3.15. Emisie stimulată.

Fotonul stimulator și cel emis vor produce, la rândul lor, doi noi fotoni dacă întâlnesc alți atomi, excitați ș.a.m.d.

Undele asociate fotonilor sunt în fază și, ca urmare, amplitudinea radiației crește continuu, păstrându-și coerența (fig. 3.15).

Amplificarea luminii prin emisie stimulată de radiație se numește *efect LASER* (*L*ight *A*mplification by *S*timulated *E*mision of *R*adiation).

Intensitatea radiației este proporțională cu numărul atomilor aflați în stare excitată. În mod normal, într-o substanță, numărul de atomi din starea fundamentală este mult mai mare decât cel din starea excitată: starea fundamentală este "mai populată".

Pentru a se realiza amplificarea radiației, trebuie ca numărul de atomi aflați în starea E^* să fie mai mare decât numărul de atomi din starea E, adică să se realizeze o *inversie de populație* între cele două niveluri.

¹ Vezi şi http://en.wikipedia.org/wiki/laser.

Ansamblul de sisteme atomice pentru care s-a realizat inversia populațiilor se numeste *mediu activ*.

Operația prin care se realizează inversia populațiilor se numește *pompaj optic*. Acesta depinde de natura substanței utilizate ca mediu activ.

Pentru o substanță solidă se folosește iradierea cu lumină intensă de frecvență adecvată.

Pentru un gaz se realizează descărcări electrice în gazul respectiv.

Emisia stimulată se folosește în construcția maserilor și a laserilor. Ei se deosebesc prin lungimea de undă a radiației emise (la maseri $\lambda \approx 1$ cm, domeniul microundelor, la laseri – domeniul optic) și prin natura mediului activ (la maser, sistem molecular, iar la laser, sistem atomic).

În componența unui laser se deosebesc trei părți esențiale: mediul activ, care poate fi solid (laserul cu rubin) sau gaz (laseri cu gaz atomici, He–Ne, laseri cu gaz ionici și laseri cu gaz moleculari), sursa de pompaj și cavitatea rezonantă.

În cavitatea rezonantă se așază mediul activ pentru a lungi drumul undelor prin mediu, cu scopul de a mări intensitatea radiației emise.

Laserul cu rubin

Mediul activ este un monocristal de rubin sub forma unei bare cilindrice care este, în același timp, cavitate rezonantă. Capetele cristalului sunt foarte bine șlefuite și argintate, astfel încât joacă rolul unor oglinzi, O_1 și O_2 (O_2 – semitransparentă). Pompajul optic se realizează cu un tub de descărcare cu Xe, înfășurat în jurul cristalului (fig. 3.16), care trimite impulsuri de lumină. Oglinzile amplifică emisia în direcția axei cristalului.

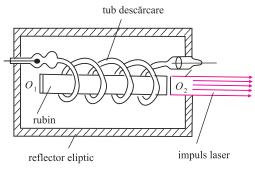


Fig. 3.16. Laser cu rubin.

Proprietățile și aplicațiile radiațiilor laser

- 1. Coerența radiația emisă este în fază cu radiația stimulatoare.
- 2. Monocromaticitatea este una dintre cele mai importante proprietăți.

Ea se realizează datorită faptului că emisia este stimulată între două nivele înguste bine determinate.

- 3. *Direcționalitatea*. Lumina laser este emisă sub forma unui fascicul paralel, deoarece sunt amplificate numai acele unde care se propagă de-a lungul axei cavității.
- 4. *Intensitatea* este foarte mare, de zeci de ori mai mare decât intensitatea emisă la suprafața Soarelui.

Puterile emise de laser, au valori cuprinse între câțiva mW și sute de GW. Câteva exemple de aplicații ale radiațiilor laser: la determinarea cea mai precisă a vitezei de propagare a luminii, în telecomunicații, în chirurgia oftalmologică și în stomatologie, în realizarea imprimantelor cu laseri, a compact-discurilor, în tehnica militară, holografie ș.a.m.d.

Realizarea practică a holografiei a fost posibilă doar după construirea primilor laseri.

Holograma este o imagine tridimensională care apare cu ajutorul unei raze laser.

Termenul "holografie" vine din limba greacă: *holos* – întreg și *grafein* – a scrie.

Prin holografie nu se înregistrează imaginea obiectului (ca în fotografie). Holografia este un proces care se desfășoară în două etape:

1. Înregistrarea hologramei. Fasciculul de lumină monocromatică și coerentă provenit de la un laser este divizat în două componente cu ajutorul unei lentile semitransparente.

Un fascicul este dirijat spre obiect, fiind transmis de acesta spre stratul fotosensibil (undă obiect), iar cealaltă componentă este trimisă direct pe mediul de înregistrare.

Cele două unde coerente interferă, astfel încât pe emulsia fotografică se înregistrează un sistem de franje de interferență reprezentând *holograma* obiectului. Imaginea holografică *înregistrează complet* obiectul, fără ca aceasta să reprezinte *imaginea* lui.

2. Reproducerea imaginii obiectului. După îndepărtarea obiectului, holograma (developată fotografic) este iluminată cu un fascicul paralel monocromatic identic cu cel folosit la înregistrare. Variațiile în înnegrire ale hologramei produc difracția luminii, ducând la reconstituirea imaginii tridimensionale a obiectului. Această imagine se modifică în funcție de schimbarea direcției din care privim așa cum se întâmplă la observarea directă a unui obiect când îl privim cu ambii ochi.

Holografia este folosită în cinematografie, televiziune, microscopie, electronică holografică. Teoria holografică a stimulat diferite ipoteze legate de funcționarea memoriei.

Probleme rezolvate

1. Dacă 5% din energia furnizată unui bec cu incandescență este radiată ca lumină vizibilă, câte cuante vizibile sunt emise pe secundă de un bec de 100 W, lungimea de undă a radiației vizibile fiind de 560 nm?

$$P = \frac{Nhv}{t} = \frac{N}{t} h \frac{c}{\lambda} \text{ si numeric: } 0.05 \cdot 100 \text{ W} = \frac{N}{t} 6.62 \cdot 10^{-34} \text{ J} \cdot \text{s} \cdot \frac{3 \cdot 10^8 \text{ m/s}}{560 \cdot 10^{-9} \text{ m}};$$
 rezultă $\frac{N}{t} = 14.1 \cdot 10^{18} \text{ s}^{-1}.$

2. Care este momentul cinetic al electronului într-un atom de hidrogen aflat în stare fundamentală?

$$\overline{rmv = n\frac{h}{2\pi}}$$
; $n = 1$ și rezultă: $rmv = \frac{h}{2\pi} = \frac{6,62 \cdot 10^{-34} \text{ J} \cdot \text{s}}{2 \cdot 3,14} = 1,05 \cdot 10^{-34} \text{ J} \cdot \text{s}.$

3. Calculați lungimea de undă a liniei emise în tranziția de la $n_i = 4$ la $n_f = 2$ (seria Balmer).

$$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right). \text{ Pentru } n_i = 4 \text{ și } n_f = 2 \text{ avem } \frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{16}\right). \hat{\text{Inlocuind valorile}}$$

numerice rezultă: $\frac{1}{\lambda} = 1,097373 \cdot 10^7 \text{ m}^{-1} \left(\frac{1}{4} - \frac{1}{16} \right)$, de unde: $\lambda = 486 \text{ nm}$.

4. Să se estimeze numărul liniilor spectrale din seriile Lyman, Balmer, Paschen, Brackett, Pfund, emise de atomii de hidrogen aflați la presiunea $666,5 \text{ N/m}^2$ și temperatura T=300 K. Se consideră atomul de hidrogen de formă cubică având latura l și, de asemenea, că atomul de hidrogen verifică modelul atomic a lui Bohr. Se cunosc: $k=1,38\cdot10^{-23} \text{ J/K}$ (constanta lui Boltzmann); $h=6,62\cdot10^{-34} \text{ J·s}$; $c=3\cdot10^8 \text{ m/s}$; $e=1,6\cdot10^{-19} \text{ C}$; $R=1,09\cdot10^7 \text{ m}^{-1}$;

$$\frac{1}{4\pi\varepsilon_0} = 9.10^9 \text{ N}\cdot\text{m}^2/\text{C}^2; m = 9.1\cdot10^{-31} \text{ kg}.$$

Volumul unui atom este: $v = l^3 = \frac{V}{N}$. Mărimea lui $\frac{V}{N}$ poate fi calculată din ecuația

termică de stare a gazului ideal scrisă sub forma: $pV = NkT \Rightarrow \frac{V}{N} = \frac{kT}{p}$, deci: $l = \sqrt[3]{\frac{kT}{p}}$,

iar raza maximă a atomului este: $r_n = \frac{l}{2}$.

Din datele cunoscute, se poate calcula raza primei orbite Bohr, r_1 , care este egală cu:

$$r_1 = \frac{\varepsilon_0 h^2}{\pi m e^2} = 0.53 \cdot 10^{-10}$$
 m. Ştim că: $r_n = r_1 n^2$, de unde putem afla numărul cuantic

principal maxim:
$$n^2 = \frac{r_n}{r_1} = \frac{l}{2r_1} = \frac{1}{2r_1} \sqrt[3]{\frac{kT}{p}}$$
.

Înlocuind numeric se obține: $n^2 \approx 169$, deci, numărul cuantic principal este: n = 13. Cunoscând numărul cuantic principal n, numărul liniilor spectrale N din seriile enumerate vor fi egale cu:

$$N_{\rm L} = n - 1 = 12$$
 linii (Lymann)
 $N_{\rm B} = n - 2 = 11$ linii (Balmer)
 $N_{\rm P} = n - 3 = 10$ linii (Paschen)
 $N_{\rm Br} = n - 4 = 9$ linii (Brackett)

$$N_{\rm pf}^{\rm Br} = n - 5 = 8$$
 linii (Pfund).

5 Să se calculeze diferența de potențial necesară pentru accelerarea unui electron astfel ca limita spectrului continuu de raze X, pentru lungimi de undă scurte, să fie de 0,1 nm. Se cunosc: $h = 6,62 \cdot 10^{-34}$ J·s, $c = 3 \cdot 10^8$ m/s și $e = 1,6 \cdot 10^{-19}$ C.

Din relația 3.27, $\lambda_{\min} = \frac{hc}{eU}$. Rezultă că: $U = \frac{hc}{e\lambda_{\min}}$. Înlocuind numeric și efectuând

calculele se obține: $U = \frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{1.6 \cdot 10^{-19} \cdot 10^{-10}} = 12412.5 \text{ V}.$

$$r_n = \frac{\varepsilon_0 h^2}{\pi m e^2} n^2; \ v_n = \frac{e^2}{2\varepsilon_0 h} \frac{1}{n}; \ p_n = \frac{m e^2}{2\varepsilon_0 h} \frac{1}{n}; \ E_n = \frac{m e^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2}; \ E_n = \frac{E_1}{n}.$$

Probleme propuse

1. Care este viteza liniară a electronului în atomul de hidrogen aflat în stare fundamentală?

R:
$$2.2 \cdot 10^6$$
 m/s.

2. Cunoscând că forța coulombiană care acționează asupra electronului, în atomul de hidrogen aflat în stare fundamentală, este $8.2 \cdot 10^{-8}$ N, să se calculeze accelerația lui.

R:
$$9 \cdot 10^{22} \text{ m/s}^2$$
.

3. Energia totală a unui electron într-un atom de hidrogen este -0,85 eV. Care este numărul cuantic al acestui nivel energetic?

R: 4.

4. Știind că energia potențială coulombiană a electronului unui atom de hidrogen ¹₁H este egală cu –0,5 *Rhc*, să se determine numărul cuantic principal al stării electronului.

R: 2.

5. Distanța de la nucleu până la nivelul energetic pe care se află electronul în atomul de hidrogen este $2,12 \cdot 10^{-10}$ m. Știind că raza primei orbite Bohr în atomul de hidrogen este $0,53 \cdot 10^{-10}$ m, ce număr cuantic corespunde acestui nivel energetic?

R: 2.

6. Cunoscând condiția de cuantificare a lui Bohr, să se deducă relația dintre momentul cinetic al stării fundamentale și momentul cinetic corespunzător celei de-a cincea stări permise.

R:
$$L_5 = 5L_1$$
.

7. Determinați energia de ionizare a electronului din atomul de hidrogen, dacă numărul cuantic principal al stării electronului este n=2. Se cunosc: $h=6.62 \cdot 10^{-34} \text{ J} \cdot \text{s}$, $c=3\cdot 10^8 \text{ m/s}$ și constanta lui Rydberg, $R=1.09\cdot 10^7 \text{ m}^{-1}$.

R:
$$5,4 \cdot 10^{-19}$$
 J.

8. Energia totală a electronului din atomul de hidrogen, pe nivelul caracterizat de numărul cuantic principal n, este $E_n = -2,42 \cdot 10^{-19}$ J. Tranziția electronului pe nivelul caracterizat de numărul cuantic principal m este însoțită de emisia unei radiații cu lungimea de undă $\lambda = 651,3$ nm. Cunoscând energia de ionizare a atomului de hidrogen $E_1 = -13,6$ eV, să se determine valorile numerelor cuantice n și m ($h = 6,6 \cdot 10^{-34}$ J·s).

R:
$$n = 3$$
, $m = 2$.

9. Câte linii spectrale emite un gaz format din atomi de hidrogen, excitați de o sursă oarecare, pe nivelul cu numărul cuantic principal n = 10?

R: 45 linii.

10. Care este raportul dintre frecvențele corespunzătoare limitelor seriilor Balmer şi Paschen?

R: 9/4.

11. Într-un tub de raze X, electronii emişi de filament sunt accelerați de un potențial de accelerare U=10 kV. Să se calculeze lungimea de undă minimă a radiației X emise. Se consideră cunoscute: $e=1.6 \cdot 10^{-19}$ C, $c=3 \cdot 10^{8}$ m/s și $h=6.62 \cdot 10^{-34}$ J · s.

R: 0,1241 nm.

12. Cunoscând că tensiunea între electrozii unui tub generator de raze X este de 15 kV, că diferența dintre lungimile de undă ale radiației emise K_{α} și limita spectrului continuu al radiației X este $0.84 \cdot 10^{-10}$ m și constanta de ecran are valoarea 1, să se afle din ce metal este alcătuit anticatodul tubului. Se cunosc: $h = 6.62 \cdot 10^{-34} \, \text{J} \cdot \text{s}, \ e = 1.6 \cdot 10^{-19} \, \text{C}$ și $R = 1.0973 \, \text{m}^{-1}$.

R: Z = 28 (nichel).

Test recapitulativ

- 1. Cum se exprimă matematic al II-lea postulat al lui Bohr?
- 2. Impulsul electronului în starea energetică permisă cu n = 3 este:

a)
$$\frac{me^2}{2\epsilon_0 h^2} \frac{1}{3}$$
;

b)
$$\frac{me^2}{2\varepsilon_0 h} \frac{1}{3}$$
;

c)
$$\frac{me^2}{6\varepsilon_0^2h}$$
.

3. Știind că $v_n = \frac{v_1}{n}$ și $r_n = r_1 n^2$, să se demonstreze că momentul cinetic crește liniar

4. Relația dintre energia totală a electronului, în câmpul coulombian într-un atom de hidrogen, și energia potențială este:

a)
$$E_{t} = \frac{E_{p}}{2}$$
;

b)
$$E_{t} = 2E_{p}$$
;

c)
$$E_{t} = \frac{E_{p}}{4}$$
.

5. Relația dintre energia potențială și energia cinetică într-un atom de hidrogen este:

a)
$$E_{p} = 2E_{c}$$
;

b)
$$E_p = \frac{E_c}{2}$$
;

c)
$$E_p = -2E_c$$
.

6. Energia totală a electronului într-un atom hidrogenoid are expresia:

a)
$$\frac{mZ^2e^4}{8h^2\varepsilon_0^2};$$

b)
$$-\frac{mZ^{2}e^{4}}{8h^{2}\varepsilon_{0}^{2}}$$
;

$$c) - \frac{mZ^2e^4}{8h^3\varepsilon_0^2}.$$

7. Un atom de hidrogen, aflat în stare fundamentală, este excitat cu o radiație monocromatică de energie E_e . Spectrul emis de gaz este format din trei linii spectrale distincte. Folosind modelul atomic al lui Bohr, să se determine numărul cuantic principal al stării excitate și energia de excitație E_e , cunoscând $E_1 = -13.6$ eV.

8. Limita seriei spectrale Pfund este:

a) R/16;

b) *R*/25;

c) R/9.

- **9.** Să se calculeze de câte ori se va mări raza orbitei electronului unui atom de hidrogen care se găsește în starea fundamentală și care este excitat cu o cuantă având energia de 12,09 eV.
 - a) de 4 ori;
- b) de 9 ori;

- c) de 16 ori.
- 10. Ce pune în evidență experimentul lui Franck și Hertz?
- **11.** Ce sunt radiațiile X?
- 12. Știind că radiațiile corespund liniei Balmer de cea mai mare lungime de undă $\lambda = 656,3$ nm, să se calculeze valoarea constantei lui Rydberg.

Semiconductoare. Aplicații în electronică

- 4.1. Conducția electrică în metale.
 - Semiconductoare intrinseci și extrinseci
 - 4.1.1. Semiconductoare intrinseci
 - 4.1.2. Semiconductoare extrinseci
- 4.2. Dioda semiconductoare.
 - Redresarea curentului alternativ
 - 4.2.1. Jonctiunea pn nepolarizată
 - 4.2.2. Dioda semiconductoare.
 - Definiție și proprietăți electrice generale
 - 4.2.3. Fenomene fizice în dioda semiconductoare în regim de conducție
 - 4.2.4. Redresarea curentului alternativ
 - 4.2.5. Redresorul monoalternanță
 - 4.2.6. Redresorul dublă alternanță
 - 4.2.7. Redresoare cu multiplicare de tensiune
 - 4.2.8. Stabilizator de tensiune cu diodă Zener
- 4.3. Tranzistorul cu efect de câmp (TEC)*
 - 4.3.1. Tranzistorul cu efect de câmp cu joncțiuni (TEC-J)*
 - 4.3.2. Tranzistoare cu efect de câmp (TEC) cu poartă izolată*
 - 4.3.3. Polarizarea pentru TEC în montaj amplificator*
 - 4.3.4. Tranzistorul bipolar cu joncțiuni *p-n**
- 4.4. Circuite integrate *

^{*} Teme destinate claselor cu 3 ore pe săptămână la disciplina Fizică.

Semiconductoare. Aplicații în electronică

4.1. Conducția electrică în metale. Semiconductoare intrinseci și extrinseci

Prin conductibilitate electrică a unei substanțe înțelegem proprietatea acesteia de a fi parcursă de un curent electric sub acțiunea unei tensiuni electrice continue aplicate din exterior. Din punct de vedere al conductibilității electrice, corpurile solide se împart în trei categorii: conductoare (metale), izolatoare (dielectrici) și semiconductoare. Conductibilitatea electrică a unui corp solid este determinată de existența în structura sa a purtătorilor de sarcină liberi sau mobili, fiind cu atât mai mare cu cât concentrația acestora (numărul de purtători de sarcină din unitatea de volum) este mai mare. Aplicând o diferență de potențial (tensiune) între două puncte ale suprafeței unui corp solid, în interiorul acestuia se stabilește un câmp electric. Curentul electric determinat de mișcarea ordonată a purtătorilor de sarcină liberi, datorată acțiunii unui câmp electric, poartă numele de curent de conducție. Mișcarea ordonată a purtătorilor de sarcină pe direcția vectorului intensitate a câmpului electric, \vec{E} , poartă numele de mișcare de drift, iar viteza lor medie pe direcția intensității câmpului electric poartă numele de viteză de drift.

Pentru un conductor cilindric de secțiune S_0 parcurs de un curent electric de intensitate I se definește densitatea de curent j ca fiind raportul:

$$j = I/S_0$$

Densitatea curentului de conducție este o mărime fizică vectorială, modulul său fiind, prin definiție, numeric egal cu sarcina electrică ce străbate unitatea de suprafață în unitatea de timp; sensul și direcția sa sunt date de sensul și direcția vitezei de drift a purtătorilor de sarcină liberi.

Să considerăm purtătorii de sarcină liberi existenți în elementul de volum ΔV de lungime Δl și secțiune S_0 care se mișcă ordonat sub acțiunea câmpului electric extern de intensitate E. Sarcina electrică totală existentă în elementul de volum ΔV va fi $Q = nq\Delta V = nqS_0\Delta l$; cu n s-a notat concentrația purtătorilor de sarcină liberi adică numărul de purtători liberi de sarcină din unitatea de volum. Mărimea q reprezintă sarcina electrică a unui purtător de sarcină liber. În cazul corpurilor solide, purtătorii de sarcină liberi sunt, în general, electronii, astfel încât $q_e = -e$, $e = 1,602177 \cdot 10^{-19}$ C fiind sarcina electrică elementară. Ținând seama de definiția densității de curent, se poate scrie, pentru conductorul metalic:

$$j = \frac{Q}{S_0 \Delta t} = -ne \frac{\Delta l}{\Delta t} = -ne v_d,$$

relație care poate fi scrisă vectorial astfel:

$$\vec{j} = -ne\vec{v}_{d} \tag{4.1}$$

unde $v_d = \Delta l/\Delta t$ reprezintă viteza de drift a purtătorilor de sarcină. Semnul minus arată că sensul curentului electric este contrar sensului de deplasare al electronilor liberi sub acțiunea câmpului electric extern.

- Substanțele în stare solidă pot alcătui:
- corpuri solide amorfe, pentru care componenții sunt dispuși dezordonat;
- corpuri solide cristaline, pentru care componenții (atomi, molecule sau ioni) prezintă o dispunere periodică în spațiu.

Sistemul de atomi, molecule sau ioni dispuşi periodic în spațiu formează *rețeaua cristalină* a corpului respectiv. Punctele din spațiu în care sunt localizați atomii, moleculele sau ionii care formează rețeaua cristalină alcătuiesc noduri ale retelei cristaline.

• În cazul *metalelor*, care sunt corpuri solide cristaline, electronii exteriori ai atomilor, numiți *electroni de valență*, sunt foarte slab legați de nucleu, legăturile lor cu nucleul sunt rupte, aceștia deplasându-se liber în spațiul dintre atomi. Așadar, în nodurile rețelei cristaline ale metalelor se găsesc ioni pozitivi (atomi care și-au pierdut electronii exteriori) printre care se mișcă electronii liberi.

Datorită agitației termice, ionii pozitivi localizați în nodurile rețelei cristaline execută mișcări de vibrație în jurul poziției de echilibru. Amplitudinea mișcării de vibrație a ionilor pozitivi crește odată cu temperatura. Electronii liberi formează așa-numitul gaz electronic, denumire care provine din compararea mișcării lor cu cea a moleculelor unui gaz. În cursul mișcării, electronii liberi interacționează (se ciocnesc) haotic cu ionii pozitivi, schimbându-și direcția de deplasare astfel încât, în absența unui câmp electric extern, sarcina electrică netă transportată de electronii liberi în unitatea de timp printr-o secțiune oarecare a conductorului este nulă.

Aplicând un câmp electric extern, electronii liberi capătă o mișcare ordonată pe direcția câmpului electric determinând astfel apariția unui curent electric. Mișcarea ordonată a electronilor liberi datorată acțiunii câmpului electric extern se suprapune peste miscarea haotică a acestora datorată agitatiei termice.

Efectul ciocnirilor dintre ionii pozitivi și electronii liberi poate fi echivalat cu acțiunea forței de frânare aplicată electronilor liberi. În intervalul de timp dintre două ciocniri, a cărui valoare medie o vom nota cu t_c , datorită prezenței câmpului electric extern E electronii liberi se vor mișca uniform accelerat cu accelerația

$$\vec{a} = -\frac{e}{m^*}\vec{E},$$

unde m^* se numește masa efectivă a electronului. Viteza de drift va fi egală cu

 $^{^8}$ Mărime ce înlocuiește masa m_e a electronului (definită în afara conductorului) pentru a face corecția necesară impusă de prezența rețelei cristaline în interacțiunea dintre ea și electron. Interacțiunea se realizează prin intermediul câmpului electric al rețelei.

viteza medie a electronului în intervalul dintre două ciocniri:

$$\vec{\boldsymbol{v}}_{d} = \vec{a} \, \frac{t_{c}}{2} = - \, \frac{e t_{c}}{2 m^{*}} \vec{E}$$

sau

$$\vec{\boldsymbol{v}}_{d} = -\mu_{\rho}\vec{\boldsymbol{E}}\,,\tag{4.2}$$

unde factorul de proporționalitate μ_a poartă numele de mobilitate a purtătorilor de sarcină (în cazul nostru electronii liberi) și se măsoară în $m^2/(V \cdot s)$. Înlocuind \vec{v}_d dat de relația (4.2) în relația (4.1) rezultă: $\vec{j} = ne\mu_a \vec{E}$

$$\vec{j} = ne\mu_e \vec{E}$$

sau

$$\vec{j} = \sigma \vec{E} \,, \tag{4.3}$$

unde $\sigma = ne\mu_e$ poartă numele de *conductivitate electrică* a conductorului metalic respectiv și se măsoară în Ω^{-1} m⁻¹.

Observatie:

Conform Legii lui Ohm pentru o porțiune de conductor de lungime l, secțiune S_0 , rezistență R, parcurs de curentul electric de intensitate I datorat tensiunii electrice U aplicată la capetele sale:

$$U = RI = \frac{\rho l}{S_0} I.$$

Pe de altă parte, E = U/l și $j = I/S_0$. Rezultă:

$$j = \frac{1}{\rho}E.$$

 Comparând această relație cu relatia (4.3) rezultă legătura dintre conductivitatea electrică σ și rezistivitatea ρ a unui mediu liniar și izotrop:

$$\sigma = \frac{1}{\rho}$$
.

Deoarece în cazul metalelor, concentrația electronilor liberi este foarte mare (de ordinul a 10²⁸ m⁻³), conductivitatea electrică este, de asemenea, foarte mare.

• Pentru metale $\sigma_m \in [10^6, 10^8] \Omega^{-1} \text{m}^{-1}$. Concentrația electronilor liberi în metale este practic independentă de temperatură. Rezistența electrică a metalelor este determinată de frecventa ciocnirilor electronilor liberi cu ionii pozitivi din nodurile retelei cristaline.

Rezistența electrică a metalelor crește cu temperatura, adică este cu atât mai mare cu cât frecvența ciocnirilor dintre electronii liberi și ionii pozitivi este mai

- În cazul izolatoarelor, legăturile electronilor de valență cu nucleele sunt foarte puternice, astfel încât nu există purtători de sarcină liberi. În consecință, conductivitatea electrică a izolatoarelor este foarte mică: $\sigma_{i, \in} [10^{-12}, 10^{-20}] \Omega^{-1} \text{m}^{-1}$.
- Semiconductoarele sunt corpuri solide având conductivitatea cuprinsă între cea a metalelor și cea a izolatoarelor ($\sigma_s \in [10^4, 10^{-8}] \Omega^{-1} m^{-1}$). Ea crește puternic cu temperatura.

4.1.1. Semiconductoare intrinseci

În cazul semiconductoarelor, electronii de valență sunt mai slab legați de nuclee decât în cazul izolatoarelor, astfel încât aceste legături pot fi rupte dacă li se comunică din exterior energie suficientă. Proprietăți semiconductoare prezintă atât unele elemente chimice, cum ar fi germaniul (Ge), siliciul (Si), seleniul (Se), cât și unii compuși ca: GaAs, InSb etc. Energia minimă, ΔW , necesară pentru trecerea electronilor de valență din starea de electroni legați în starea de electroni liberi se numește energie de activare.

Energia de activare pentru semiconductoare este cuprinsă în intervalul $(0,025 \div 3)$ eV, depinzând de natura acestora. Pentru metale, $\Delta W = 0$, iar pentru izolatoare, $\Delta W = (3 \div 10)$ eV. Deoarece energia de activare a substanțelor semiconductoare este relativ scăzută datorită agitației termice (T > 0), electronii de valență pot căpăta suficientă energie pentru a rupe legătura cu nucleul, devenind astfel electroni liberi.

Specific semiconductoarelor este faptul că la conducție participă nu numai electronii liberi, ci și electronii de valență care au rămas legați de nuclee. Pentru înțelegerea acestui fenomen să considerăm cazul particular al cristalului de ger-

maniu. Atomul de germaniu are 4 electroni de valență. La temperaturi foarte scăzute, apropiate de 0 K, în rețeaua cristalină a germaniului fiecare atom de germaniu este înconjurat echidistant de alți 4 atomi. Pentru completarea stratului exterior cu 8 electroni, fiecare electron de valență al unui atom formează o pereche cu un electron de valență din atomul vecin, cei doi electroni devenind astfel comuni ambilor atomi (fig. 4.1). Un asemenea tip de legătură între atomi poartă numele de legătură *covalentă*.

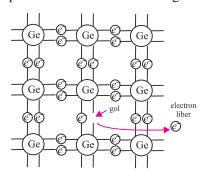


Fig. 4.1.

La temperaturi mai ridicate, o parte dintre electronii de valență părăsesc legăturile covalente devenind electroni liberi. Acești electroni lasă în locurile pe care le părăsesc legături nesatisfăcute, numite goluri. Procesul poartă numele de *generare termică a unei perechi electron-gol*.

Sub acțiunea unui câmp electric exterior, electronii unor legături covalente vecine pot umple aceste goluri, lăsând, la rândul lor, alte goluri în legăturile covalente părăsite, care, de asemenea, pot fi umplute de electroni de valență ai altor legături vecine ş.a.m.d.

Ca urmare, pe ansamblu are loc o deplasare a electronului legat (de valență) într-un sens și al golului în sens contrar. Astfel, golurile se comportă ca niște particule fictive, cu sarcina electrică pozitivă *e*, care se deplasează prin cristal și care contribuie, asemenea electronilor liberi, la conducția electrică a cristalului.

• Așadar, în semiconductoare participă la conducție două tipuri de purtători de sarcină: electronii (negativi) și golurile (pozitive). Subliniem încă o dată că

"golul" nu este o particulă reală, ci numai o reprezentare a comportării electronilor de valență ai semiconductoarelor în prezența câmpului electric extern. Într-un semiconductor pur (fără impurități), purtătorii mobili apar numai în urma procesului de generare termică de perechi electron-gol, astfel încât la echilibru termic concentrația electronilor n_0 este întotdeauna egală cu concentrația golurilor, p_0 .

Pentru un semiconductor intrinsec $n_0 = p_0 = n_i$ (n_i înseamnă concentrație intrinsecă). La o temperatură dată, concentrația intrinsecă este o constantă care depinde de natura semiconductorului pur. Deoarece numărul electronilor liberi, respectiv al golurilor, crește odată cu temperatura, rezistența electrică a semiconductoarelor intrinseci scade, în general, cu creșterea temperaturii.

4.1.2. Semiconductoare extrinseci

Conductivitatea electrică a semiconductoarelor poate fi influențată, de asemenea, de prezența impurităților. Efectul impurităților asupra conductivității electrice a semiconductoarelor depinde de doi factori: natura impurităților și concentrația acestora. Procesul tehnologic de impurificare a unui cristal semiconductor poartă numele de *dopare*. La nivele de dopare normale, numărul de atomi de impuritate raportat la numărul de atomi ai cristalului este foarte mic, fiind de ordinul unul la $10^4 \div 10^7$ atomi din cristal. Cristalul semiconductor dopat cu impurități poartă numele de *semiconductor extrinsec*. Funcție de natura atomilor de impuritate distingem două categorii de semiconductoare extrinseci:

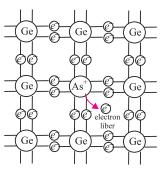


Fig. 4.2.

a) Dacă în cristalul semiconductor (de exemplu, germaniu) se introduc atomi pentavalenți (din grupa a 5-a a sitemului periodic, de exemplu arseniul, As), numai 4 dintre cei 5 electroni de valență se leagă covalent cu atomii vecini de Ge, iar al 5-lea se desprinde de atomul de impuritate și devine liber (fig. 4.2). Atomul de impuritate, deși devine ion pozitiv, nu participă la procesul de conducție, nefiind purtător de sarcină mobil. Al 5-lea electron al său este slab legat, fiind necesară o energie foarte mică pentru a-l desprinde de atom. Energia necesară este în jur de 0,01 eV pentru Ge și 0,05 eV pentru Si.

La temperatura camerei, practic toți acești electroni care nu formează legături covalente devin electroni liberi, participând la procesul de conducție electrică a cristalului semiconductor. Impuritățile care permit astfel de cedări de electroni liberi se numesc *donori*, iar semiconductorul impurificat cu atomi donori se numește *semiconductor extrinsec de tip n (negativ)*. Electronul liber astfel generat nu lasă o legătură nestisfăcută, deci nu se creează simultan un gol.

Evident, datorită agitației termice peste procesul descris mai sus se suprapune procesul de generare termică a perechilor electron-gol întâlnit și în cazul semi-conductoarelor intrinseci. Dacă notăm cu *n* concentrația electronilor liberi la

echilibru termic, proveniți atât de la atomii donori, cât și în urma procesului de generare termică electron-gol, iar cu p_0 concentrația golurilor în urma procesului de generare termică a perechilor electron-gol, se poate scrie că $n >> p_0$. Înseamnă că, practic, la procesul de conducție electrică a semiconductoarelor de tip n participă numai electronii liberi (conducție de tip n). De asemenea, datorită concentrației mult mai mari a purtătorilor de sarcină liberi rezultă că, în cazul semiconductoarelor extrinseci, conductivitatea este mult mai mare decât conductivitatea semiconductoarelor intrinseci. În semiconductoarele de tip n electronii liberi se numesc purtători majoritari, în timp ce golurile se numesc purtători minoritari.

b) Dacă în cristalul semiconductor (de exemplu, Ge) se introduc atomi trivalenți (din grupa a 3-a a sistemului periodic, de exemplu, borul, B) numai trei din cele 4 legături covalente ale atomului de impuritate vor fi satisfăcute (vor fi completate cu electroni) (fig. 4.3). Satisfacerea se poate face prin participarea unui electron vecin, care astfel lasă astfel o legătură incompletă. Se creează deci un "gol". Atomul de impuritate devine ion negativ. În semiconductor se formează un număr de goluri egal cu numărul atomilor de impuritate.

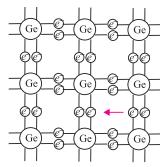


Fig. 4.3.

Astfel de impurități se numesc *acceptoare*. Purtătorii de sarcină majoritari sunt în acest caz, golurile, iar purtătorii de sarcină minoritari sunt electronii proveniți în urma procesului de generare termică electron-gol. Așadar, $p >> n_0$, fiind vorba deci de o *conducție de tip p*. Un semiconductor astfel impurificat poartă numele de *semiconductor extrinsec de tip p* (pozitiv).

Subliniem faptul că semiconductoarele extrinseci, atât cele de tip n, cât și cele de tip p sunt neutre din punct de vedere electric.

Aplicație

Rezistivitatea semiconductorului Ge intrinsec la temperatura $t=27^{\circ}\mathrm{C}$ este $\rho=0.47~\Omega\cdot\mathrm{m}$. Cunoscând mobilitățile electronilor $\mu_n=3800~\mathrm{cm}^2\cdot\mathrm{V}^{-1}\cdot\mathrm{s}^{-1}$ și a golurilor $\mu_p=1800~\mathrm{cm}^2\cdot\mathrm{V}^{-1}\cdot\mathrm{s}^{-1}$ și sarcina elementară $e=1.6\cdot10^{-19}~\mathrm{C}$, să se calculeze: a) concentrația intrinsecă n_i a purtătorilor de sarcină; b) raportul dintre viteza de transport a electronilor și viteza de transport a golurilor.

Rezolvare:

- a) conductivitatea electrică a semiconductorului intrinsec este $\sigma = en_i(\mu_n + \mu_p) = \frac{1}{\rho}$, deci concentrația intrinsecă a purtătorilor de sarcină va fi: $n_i = \frac{1}{e\rho(\mu_n + \mu_p)} = 2,37 \cdot 10^{19} \text{ m}^{-3}$.
- b) Dacă în Ge există un câmp electric de intensitate E, raportul dintre viteza de transport a electronilor, $v_n = \mu_n E$, și viteza de transport a golurilor, $v_p = \mu_p E$ va fi

$$\frac{v_n}{v_p} = \frac{\mu_n E}{\mu_p E} = \frac{\mu_n}{\mu_p} = 2,11.$$

4.2. Dioda semiconductoare. Redresarea curentului alternativ

4.2.1. Joncțiunea pn nepolarizată

Două medii semiconductoare în care purtătorii de sarcină majoritari care participă la procesul de conducție sunt electronii și, respectiv, golurile, aflate în contact, poartă numele de *joncțiune pn*. Joncțiunea *pn* se obține impurificând același cristal semiconductor cu atomi donori într-o regiune (numită regiune *n*) și cu atomi acceptori în regiunea vecină (regiune *p*). La distanță suficient de mare față de zona de contact, cele două regiuni sunt neutre din punct de vedere electric. Considerăm cazul *joncțiunii pn nepolarizate*, adică atunci când nu se aplică un câmp electric exterior.

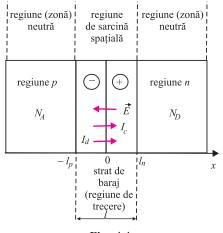


Fig. 4.4.

Datorită diferenței de concentrație, în absența unui câmp electric extern electronii liberi (purtători de sarcină majoritari în regiunea n) vor difuza în regiunea p tinzând să uniformizeze concentrația lor în întreg volumul semiconductorului. Din același motiv, golurile vor difuza în regiunea n. Electronii ajunși în regiunea p a joncțiunii neutralizează printr-un proces numit recombinare (prin care dintr-un electron liber și un gol se reface o legătură chimică) o parte dintre golurile existente în acea regiune. Deoarece ionii de impuritate nu migrează, fiind fixați în nodurile rețelei cristaline, în regiunea n rămâne o

sarcină spațială pozitivă (datorată ionilor donori necompensați) iar în regiunea p, o sarcină spațială negativă (datorată ionilor acceptori necompensați) (fig. 4.4).

Difuzia purtătorilor de sarcină nu continuă însă în întregul volum al cristalului. Existența celor două regiuni de sarcină spațială determină apariția unui câmp electric al cărui vector intensitate, \vec{E} , este orientat dinspre regiunea n spre regiunea p. Câmpul electric \vec{E} se opune trecerii purtătorilor de sarcină majoritari dintroregiune în alta. Vor trece numai acei purtători de sarcină care au energia necesară depășirii barierei de potențial, U_0 , corespunzătoare acestui câmp electric.

Orientarea vectorului intensitate a câmpului, \vec{E} , favorizează în schimb trecerea purtătorilor de sarcină minoritari dintr-o regiune în alta (golurile din regiunea n în regiunea p, electronii din regiunea p în regiunea n). La echilibru, intensitatea curentului electric total prin joncțiune, determinat de trecerea purtătorilor majoritari și minoritari dintr-o regiune în alta, este zero, astfel încât regiunea de sarcină spațială se limitează la o regiune extrem de îngustă (de

ordinul zecimilor de micrometri) din vecinătatea zonei de contact a celor două regiuni impurificate diferit. Această regiune poartă numele de regiune de trecere (sau strat de baraj). Grosimea ei depinde de natura cristalului semiconductor și de concentrația atomilor de impuritate. Dacă se notează cu I_J intensitatea curentului electric determinat de mișcarea purtătorilor de sarcină majoritari prin regiunea de trecere, numit curent de difuzie, și cu I intensitatea curentului electric datorat deplasării purtătorilor de sarcină minoritari, numit și curent de câmp, de sens invers celui dintâi, rezultă, la echilibru (adică în lipsa polarizării) $I_d - I_c = 0$, astfel că intensitatea curentului electric total care parcurge joncțiunea pn nepolarizată este zero.

Joncțiune pn nesimetrică. Prin dotarea uniformă cu concentrații diferite $(N_A \neq N_D)$ a celor două zone (regiuni) p și n ale unei joncțiuni, aceasta devine nesimetrică.

Într-adevăr, pentru regiunea de trecere există relația:

$$eN_{_{J}}l_{_{n}} = eN_{_{D}}l_{_{n}}, \tag{4.4}$$

 $eN_{_A}l_{_p}=eN_{_D}l_{_n}, \eqno(4.4)$ care exprimă egalitatea dintre sarcina negativă din porțiunea $x\in (-l_{_p},\ 0)$ și cea pozitivă din porțiunea $x \in (0, l_n)$ ale regiunii de trecere de lărgime $l = l_n + l_n$ egalitate cerută de neutralitatea globală a semiconductorului. Dacă, de exemplu, $N_{\rm A} > N_{\rm D}$, din relația (4.4) rezultă că $l_{\rm n} > l_{\rm p}$, adică regiunea de trecere pătrunde mai mult în zona mai slab dotată a joncțiunii, pătrunderea fiind invers proporțională cu concentrația de impurități.

4.2.2. Dioda semiconductoare. Definiție și proprietăți electrice generale

Dioda semiconductoare este un dispozitiv electronic alcătuit dintr-o joncțiune pn, prevăzută cu două terminale metalice aflate în contact ohmic cu extremitățile celor două regiuni neutre ale cristalului semiconductor. Prin contact ohmic metal-semiconductor înțelegem faptul că, în limite largi de valori, intensitatea curen-

tului electric care parcurge regiunea de contact este proporțională cu tensiunea aplicată la capetele sale. Pentru a asigura protecția cristalului semiconductor față de acțiunea mediului exterior, dioda este introdusă într-o capsulă ermetic închisă, din metal, sticlă sau material plastic. Structura fizică a unei diode semiconductoare este prezentată în figura 4.5, a. Simbolul general utilizat în schemele electronice pentru dioda semiconductoare este

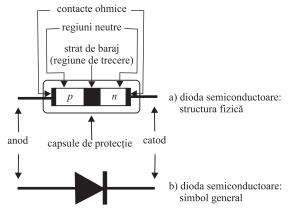


Fig. 4.5. a, b.

prezentat în fig. 4.5, b. Terminalul conectat la regiunea p a cristalului semiconductor poartă numele de anod, iar terminalul conectat la regiunea n a cristalului semiconductor poartă numele de *catod* ¹.

Experiment

Pentru determinarea experimentală a proprietăților electrice ale diodei semiconductoare se folosește circuitul din figura 4.6. (a sau b), format dintr-o sursă de tensiune continuă a cărei t.e.m. E poate fi variată, un rezistor R și o diodă semiconductoare D, legate în serie. Rezistorul R are rolul de a limita intensitatea curentului electric care trece prin circuit. Este necesară o limitare a curentului electric, deoarece în caz contrar acesta poate depăși o valoare la care dioda semiconductoare s-ar distruge datorită încălzirii excesive. Pentru măsurarea intensității curentului electric, I_{μ} , care parcurge dioda semiconductoare și a tensiunii electrice dintre anod și catod, U_x se folosesc miliampermetrul A, respectiv voltmetrul V. Se măsoară intensitatea curentului electric care parcurge dioda semiconductoare, I, pentru diferite valori ale tensiunii electrice aplicate între anod și catod, U_p rezultatele obținute fiind reprezentate grafic. Graficul care reprezintă dependența dintre intensitatea curentului electric care parcurge dioda în funcție de tensiunea electrică aplicată la bornele diodei poartă numele de caracteristică curent-tensiune a diodei semiconductoare. În funcție de polaritatea tensiunii electrice aplicate între cele două terminale ale sale, dioda semiconductoare poate fi:

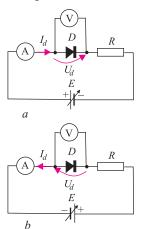
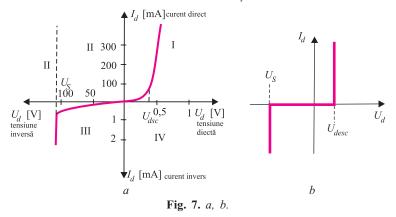


Fig. 4.6. a, b.


- polarizată direct, când potențialul electric al anodului este mai mare decât potențialul electric al catodului (tensiune electrică anodcatod pozitivă) (fig. 4.6, a);

> - polarizată invers, când potențialul electric al anodului este mai mic decât potențialul electric al catodului (tensiune electrică anod-catod negativă) (fig. 4.6, b).

> Pentru început se studiază proprietățile diodei semiconductoare polarizate direct, adică în cazul în care anodul este conectat la polul pozitiv al sursei de tensiune continuă iar catodul este conectat (prin rezistorul R) la polul negativ al aceleiași surse. Se mărește t.e.m. E a sursei de tensiune continuă începând de la 0 V și se trasează grafic $I_d = f(U_d)$. În acest caz, dependența intensității curentului electric care parcurge dioda semiconductoare I, numit curent direct, de tensiunea electrică dintre anod și catod, U_d , numită tensiune directă, este reprezentată

¹ Observatie: există un dispozitiv electronic având o construcție cu totul diferită, ce îndeplinește în circuitele electronice aceeași funcție cu cea a diodei semiconductoare, numit dioda cu vid. Dioda cu vid este un tub electronic cu doi electrozi. Deoarece, în prezent, diodele cu vid se folosesc foarte rar, numai în aplicații speciale, în literatura tehnică termenul de diodă desemnează, în general, dioda semiconductoare.

de regiunea I a graficului din fig. 4.7, a. Se observă că pentru valori ale tensiunii electrice aplicate între anod și catod (tensiune măsurată cu voltmetrul V) mai mici decât o anumită valoare U_{desc} , intensitatea curentului care parcurge dioda semiconductoare este foarte mică și crește odată cu tensiunea electrică dintre anod și catod. Mărind în continuare tensiunea E se constată că intensitatea curentului electric care parcurge dioda semiconductoare prezintă o creștere exponențială cu tensiunea electrică dintre anod și catod, în timp ce aceasta din urmă crește foarte lent, practic rămânând egală cu U_{desc} . Tensiunea U_{desc} poartă numele de tensiune de deschidere a diodei semiconductoare, valoarea sa depinzând de natura cristalului semiconductor din care este confecționată dioda.

Se consideră cazul diodei semiconductoare polarizate invers (fig. 4.6, b). Pentru aceasta, anodul diodei semiconductoare se conectează la polul negativ al sursei de tensiune continuă, iar catodul se conectează (prin rezistorul R) la polul pozitiv al aceleiași surse. Se procedează în continuare la fel ca în cazul polarizării directe, adică se mărește t.e.m. E a sursei de tensiune continuă începând de la 0 V și se trasează grafic $I_d = f(U_d)$. Se constată că pentru valori absolute ale tensiunii electrice U_d , numită acum tensiune inversă, mai mici decât o anumită valoare U_S , numită tensiune de străpungere, intensitatea curentului electric care parcurge dioda semiconductoare este foarte redusă (regiunea II a graficului din fig. 4.7, a).

Curentul electric care parcurge dioda semiconductoare atunci când aceasta este polarizată invers poartă numele de *curent invers*. Ordinul său de mărime depinde de natura cristalului semiconductor din care este confecționată dioda semiconductoare, de structura acesteia, precum și de temperatură. Dacă tensiunea inversă aplicată la bornele unei diode semiconductoare nu depășește tensiunea de străpungere, intensitatea curentului electric care parcurge dioda poate fi neglijată. (În acest caz circuitul din figura 4.6, *b* devine, practic, un circuit deschis, joncțiunea *pn* comportându-se ca un izolator electric. Structura fizică a diodei semiconductoare va consta din două suprafețe conductoare separate de un dielectric, devenind, deci, echivalentă cu cea a unui condensator electric.)

Teoria joncțiunii pn, confirmată experimental, arată că dioda semiconductoare

polarizată invers este caracterizată de o capacitate care depinde de tensiunea electrică aplicată între anod și catod. Capacitatea respectivă este maximă (de ordinul (10÷40) pF atunci când tensiunea inversă aplicată diodei este zero, scăzând pe măsură ce această tensiune crește, putând ajunge până la (2÷3) pF. Această proprietate este folosită în cazul *diodelor varicap* sau *varactor*, special construite pentru a servi în circuitele radio drept condensatoare variabile controlate în tensiune.

Dacă tensiunea electrică inversă aplicată unei diode semiconductoare depășește o anumită valoare, $U_{\rm S}$ numită tensiune de străpungere, se constată o creștere bruscă a intensității care parcurge dioda (regiunea III a graficului din figura 4.7, a). Străpungerea diodei este însoțită de efecte termice care pot altera ireversibil structura fizică a diodei semiconductoare. Din acest motiv elementele circuitelor electronice care conțin diode semiconductoare de uz general sunt calculate astfel încât tensiunile inverse să nu depășească niciodată tensiunile de străpungere.

Există, însă, diode speciale, numite *diode stabilizatoare de tensiune* sau *diode Zener* pentru care procesele implicate în străpungerea joncțiunii *pn* au un caracter reversibil. Polarizate direct, diodele Zener se comportă ca o diodă obișnuită. În regiunea de străpungere însă, tensiunea dintre anod și catod rămâne constantă pentru un interval destul de mare al intensității curentului electric care parcurge dioda. Valoarea acestei tensiuni (numită și *tensiune Zener*) depinde, practic, numai de parametrii constructivi ai diodei Zener. Alegând tipul corespunzător de diodă Zener se poate realiza, cu ajutorul unui circuit simplu, o sursă de tensiune stabilizată. Deci diodele Zener se conectează în circuit polarizate invers.

Ținând seama de faptul că, practic, curentul invers este foarte mic, fiind neglijabil, rezultă că dioda semiconductoare poate fi parcursă de curentul electric într-un singur sens: de la anod spre catod. Săgeata care intră în compunerea simbolului convențional pentru dioda semiconductoare arată sensul curentului electric care poate parcurge dioda. Această proprietate permite utilizarea diodei semiconductoare în circuitele de redresare a curentului electric alternativ.

Examinând caracteristica curent-tensiune a unei diode semiconductoare, observăm că relația dintre intensitatea curentului electric care parcurge dioda și tensiunea electrică de la bornele sale nu poate fi descrisă printr-o relație simplă de proporționalitate asemănătoare legii lui Ohm. Dioda semiconductoare este, deci, un element neliniar de circuit. Pentru valori ale tensiunii U_d pozitive sau negative, aplicate între anod și catod, la care nu apare fenomenul de străpungere (regiune I și II ale graficului din figura 4.7) se poate arăta că:

$$I_d = I_{sat} \left(e^{\frac{eU_d}{kT}} - 1 \right) \tag{4.4}$$

unde mărimea I_{sal} , numită *intensitate a curentului de saturație*, depinde de temperatura T a joncțiunii pn, precum și de parametrii constructivi ai diodei, e este sarcina elementară ($e = 1,602177 \cdot 10^{-19}$ C), iar k este constanta lui Boltzmann $k = 1,380658 \cdot 10^{-23}$ J/K).

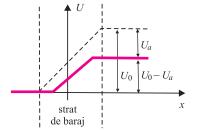
Se numește rezistență internă R_i a diodei semiconductoare mărimea fizică definită astfel:

$$R_{i} = \frac{\Delta U_{d}}{\Delta I_{d}}.$$

Rezistența internă a diodei semiconductoare nu este o mărime constantă, valoarea sa depinzând de punctul (U_d, I_d) de pe caracteristica curent-tensiune (numit și punct de funcționare) în care este calculată. Aceasta este o caracteristică specifică elementelor neliniare de circuit. Rezistența internă are o valoare foarte mare $(10^5 \div 10^6 \Omega)$ când dioda semiconductoare este polarizată invers și o valoare mult mai mică ($\sim 10 \Omega$) atunci când este polarizată direct.

Caracteristica curent-tensiune a diodei semiconductoare din figura 4.7, a poate fi aproximată de graficul din figura 4.7, b, aproximație suficient de precisă în majoritatea aplicațiilor practice. Valorile pozitive ale tensiunii, U_r , și ale intensității curentului I_d corespund cazului în care dioda semiconductoare este polarizată direct, cele negative corespunzând cazului în care dioda semiconductoare este polarizată invers.

Considerând circuitul din figura 4.6, a și b, distingem în această aproximație 3 cazuri posibile:


- a) dacă dioda semiconductoare este polarizată direct și t.e.m. E a sursei de alimentare este mai mare decât tensiunea de deschidere U_{desc} $(E > U_{desc})$, atunci:
- tensiunea dintre anodul și catodul diodei:

$$U_d = U_{desc}$$

 $U_{d} = U_{desc}$; – tensiunea dintre capetele rezistorului *R*:

 $U_R = E - U_d = E - U_{desc},$ deci conform legii lui Ohm, intensitatea curentului prin circuit va fi:

$$I_d = \frac{U_R}{R} = \frac{E - U_{desc}}{R}$$

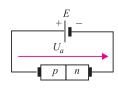
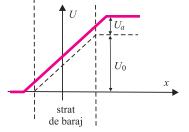



Fig. 4.8.

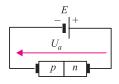


Fig. 4.9.

- b) dacă dioda semiconductoare este polarizată direct și $E < U_{desc}$ sau dacă dioda semiconductoare este polarizată invers și $E < U_s$ atunci dioda nu permite trecerea curentului electric, intensitatea curentului electric prin circuit fiind egală cu zero: $I_d = 0$ și $U_d = E - I_d R = E$;
 - c) dacă dioda semiconductoare este polarizată invers, iar $E > U_{\rm s}$, atunci:
 - tensiunea dintre anodul și catodul diodei: $U_d = U_s$;

– tensiunea dintre capetele rezistorului R: $U_R = E - U_d = E - U_s$ deci conform legii lui Ohm, intensitatea curentului prin circuit va fi:

$$I_d = \frac{U_R}{R} = \frac{E - U_S}{R}.$$

4.2.3. Fenomene fizice în dioda semiconductoare în regim de conducție

Pentru înțelegerea proprietăților diodei semiconductoare, atunci când aceasta face parte dintr-un circuit electric de curent continuu, trebuie să analizăm ce se întâmplă atunci când la capetele unei joncțiuni pn se aplică din exterior o tensiune electrică ($joncțiune\ pn\ polarizată$).

Atunci când joncțiunea pn este polarizată direct (polul pozitiv al sursei de alimentare este conectat la capătul p al joncțiunii, în timp ce polul negativ al sursei de alimentare este conectat la capătul n al joncțiunii) (fig. 4.8) diferența de potențial dintre regiunile p și n scade de la U_0 la $U_0 - U_a$, U_a fiind tensiunea externă aplicată.

Corespunzător, câmpul electric în stratul de baraj își micșorează intensitatea. În aceste condiții electronii din regiunea n și golurile din regiunea p, adică purtătorii majoritari, înaintează spre zona de separație și pătrund în zona vecină la o distanță de aproximativ 10^{-2} cm, numită *lungime de difuzie L*; o parte se recombină conducând la micșorarea grosimii stratului de baraj, restul ajungând la electrozii sursei de tensiune. Sursa externă de tensiune întreține în continuare curentul electric în circuit, alimentând în permanență regiunea p cu goluri.

Atunci când tensiunea externă aplicată este suficient de mare, astfel încât câmpul electric datorat acesteia compensează complet câmpul electric intern din stratul de baraj, regiunea de sarcină spațială dispare, conductivitatea electrică în zona respectivă devenind egală cu cea a restului cristalului semiconductor. În această situație, rezistența semiconductorului și rezistența circuitului extern vor determina valoarea intensității curentului electric prin circuit.

Așadar, când crește tensiunea aplicată, U_a , crește și numărul purtătorilor majoritari care traversează joncțiunea, deci și intensitatea curentului electric prin circuit. Atunci când joncțiunea pn este polarizată invers (polul negativ al sursei de alimentare este conectat la capătul p al joncțiunii, în timp ce polul pozitiv al sursei de alimentare este conectat la capătul p al joncțiunii) (fig. 4.9), diferența de potențial dintre regiunile p și p0 crește de la p0 la p0 la p0. Câmpul electric intern din stratul de baraj fiind mai intens, micșorează foarte mult numărul purtătorilor de sarcină majoritari care traversează acestă regiune. Intensitatea curentului electric datorat purtătorilor majoritari devine neglijabilă față de intensitatea curentului electric datorat purtătorilor minoritari generați termic în regiunile neutre. Astfel, curentul electric prin circuit rezultat (curentul invers) va avea intensitatea mult mai mică decât în cazul polarizării directe.

La tensiuni inverse mari se constată o creștere foarte pronunțată a intensității curentului prin dioda semiconductoare. La o tensiune inversă egală cu tensiunea de străpungere, U_{S} intensitatea curentului crește abrupt, fiind necesară prezența unui rezistor în circuitul exterior pentru a împiedica distrugerea diodei datorită încălzirii sale excesive. Mecanismele care pot provoca o străpungere abruptă, cu saturație în tensiune, sunt efectul Zener și efectul de multiplicare in avalanșă a purtătorilor mobili de sarcină. Ambele efecte au drept cauză creșterea intensității câmpului electric în joncțiunea pn polarizată invers.

Efectul Zener constă în ruperea unor legături covalente dintre atomii rețelei din cauza câmpului electric foarte intens, generându-se astfel perechi electron-gol, fenomen ce conduce la străpungerea diodei.

În marea majoritate a cazurilor străpungerea diodei semiconductoare se datorează celuilalt efect, al multiplicării purtătorilor de sarcină mobili în avalanșă. Sub acțiunea câmpului electric intens, purtătorii de sarcină mobili sunt accelerați până la valori ale energiei cinetice suficient de mari pentru a rupe legături covalente, ceea ce generează noi purtători mobili. Aceștia dau un curent numit curent de generare, $I_{G'}$ care se adaugă curentului invers, astfel încât curentul total prin diodă este:

$$I = -M(I_0 + I_G).$$

• Mărimea M se numește factor de multiplicare și este dată de relația empirică:

$$M = \frac{1}{1 - \left(\frac{U_d}{U_S}\right)^2},$$

unde exponentul n este cuprins între 3 și 7, funcție de tipul constructiv ala diodei. Atunci când $U_d \to U_S$, $M \to \infty$ (condiția de străpungere).

Așa cum am arătat și mai înainte, fenomenul de străpungere a diodei semiconductoare devine util în acele circuite în care se cere păstrarea unei tensiuni constante la variații în limite largi ale intensității curentului (*stabilizatoare de tensiune*). Ca diode stabilizatoare de tensiune, numite și *diode Zener*, se folosesc diodele la care străpungerea se datorează efectului de multiplicare în avalanșă. Creșterea intensității curentului în preajma tensiunii de străpungere datorită multiplicării în avalanșă se face mult mai abrupt decât în cazul unei străpungeri prin efect Zener.

Trebuie subliniat că, atât timp cât nu intervin efecte termice distructive, caracteristicile curent—tensiune ale diodelor stabilizatoare de tensiune sunt reversibile și reproductibile.

Tipuri de diode semiconductoare

Diodele semiconductoare se folosesc pe scară largă în construcția diverselor circuite electronice unde îndeplinesc funcții variate. Diodele pot îndeplini funcția de *detectie* a semnalelor de înaltă frecventă, de *redresare*, pot fi folosite drept

condensatoare variabile controlate în tensiune, ca stabilizatoare de tensiune, ca dispozitive de semnalizare optică, ca generatoare sau detectoare în circuitele cu microunde, ca senzori de radiație luminoasă etc. Deși toate diodele semiconductoare au unele proprietăți asemănătoare, pentru fiecare funcție în parte este necesară folosirea unei categorii diferite de diode, care prezintă anumite caracteristici electrice particulare. Chiar în cadrul aceleiași categorii pot exista diverse tipuri de diode semiconductoare ale căror caracteristici electrice, deși au trăsături comune, diferă de la un tip la altul. Caracteristicile electrice ale diodelor semiconductoare depind de natura și de dimensiunile cristalului semiconductor, de natura și de concentrația atomilor de impuritate, precum și de distribuția acestora în cristalul semiconductor. Prin combinarea acestor parametri în cursul

procesului tehnologic de fabricație se obțin diverse tipuri de diode, care prezintă caracteristicile electrice necesare aplicatiilor pentru care sunt destinate. În schemele electronice, anumite categorii de diode semiconductoare sunt reprezentate printr-un simbol special. În tabelul alăturat sunt prezentate câteva tipuri de diode semiconductoare, clasificate după funcția îndeplinită în circuitele electronice.

Categorie	Funcția îndeplinită
Diode de detecție	Detecția semnalelor de înaltă frecvență (obținerea unei tensiu- ni continue sau de joasă frecvență proporțională cu amplitudinea unei tensiuni de înaltă frecvență)
Diode redresoare	Redresarea tensiunilor alternative
Diode Zener	Stabilizatoare de tensiune
Diode varicap	Condensatoare variabile controlate în tensiune
Diode de comutație	Prelucrarea impulsurilor
Diode electroluminiscente (LED)	Semnalizare optică
Diode tunel	Generatoare de microunde
Fotodiode	Senzori de radiație luminoasă

4.2.4. Redresarea curentului alternativ

Majoritatea circuitelor electronice care intră în compunerea diferitelor instalații, echipamente, aparate de uz industrial sau casnic sunt alimentate în curent continuu. Pe de altă parte, energia electrică se produce, se transportă și se distribuie sub formă de curent alternativ. Transformarea energiei electrice de curent alternativ în energie electrică de curent continuu se face cu ajutorul unor circuite electronice numite *circuite de redresare* sau, mai pe scurt, *redresoare*. Tensiunea continuă obținută la ieșirea redresorului trebuie să aibă o anumită valoare cerută de caracteristicile circuitului electronic alimentat.

Pentru a furniza la ieșire o tensiune continuă de o anumită valoare este necesar ca tensiunea alternativă de la intrarea redresorului să aibă, de asemenea, o valoare determinată, care poate să difere de tensiunea rețelei electrice. În acest scop se utilizează, în cele mai multe cazuri, un *transformator electric*.

În literatura tehnică, acest transformator este numit uneori *transformator de rețea*. Primarul transformatorului se conectează la rețeaua de curent alternativ, în timp ce tensiunea electrică alternativă care apare în secundar se aplică la intrarea redresorului.

Circuitul de redresare are în compunerea sa două elemente principale: *elementul redresor* și *filtrul de netezire*. Elementul redresor permite trecerea curentului electric într-un singur sens. Deoarece dioda semiconductoare permite trecerea curentului electric într-un singur sens, aceasta este utilizată pe scară largă ca element redresor. Utilizarea diodei semiconductoare ca element redresor prezintă următoarele avantaje: cădere de tensiune în conducție directă mică, durată de funcționare fără întreținere, gabarit redus și cost scăzut.

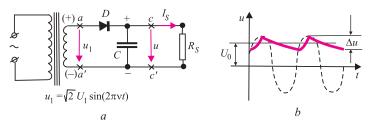
Așa cum vom vedea în continuare, filtrul de netezire are rolul de a reduce ondulațiile tensiunii redresate (tensiunea de la ieșirea redresorului).

4.2.5. Redresorul monoalternanță

Să considerăm circuitul din figura 4.10, a, format din transformatorul TR, al cărui primar este conectat la rețeaua de curent alternativ, dioda semiconductoare D (conectată în circuit cu anodul spre secundarul transformatorului) și rezistorul R_S Rezistorul R_S constituie sarcina sau consumatorul care trebuie alimentat cu tensiune continuă. Notăm cu U_1 și v_0 , valoarea efectivă a tensiunii electrice alternative și, respectiv, frecvența acesteia, existente la bornele secundarului transformatorului TR.

Atunci când polaritatea tensiunii electrice din secundarul transformatorului TR este cea indicată în figură între paranteze, dioda D – fiind polarizată direct – permite trecerea curentului electric care se închide prin rezistorul R_{S} . Tensiunea electrică aplicată între capetele rezistorului R_{S} , a cărui variație este prezentată în fig. 4.10, b, are valoarea maximă $\sqrt{2}\,U_{1} - U_{desc}, U_{desc}$ fiind tensiunea de deschidere a diodei D. În majoritatea aplicațiilor, $U_{1} >> U_{desc}$, astfel că U_{desc} poate fi neglijată. Când polaritatea tensiunii electrice din secundarul transformatorului TR se schimbă, dioda D – fiind polarizată invers – blochează trecerea curentului electric. În acest caz, tensiunea electrică între capetele rezistorului R_{S} este zero. Deși curentul electric I_{S} care parcurge rezistorul R_{S} nu-și schimbă niciodată sensul, tensiunea electrică aplicată între capetele rezistorului R_{S} (care constituie consumatorul) nu poate fi considerată tensiune continuă, deoarece variază în




Fig. 4.10, a, b.

timp. Variațiile tensiunii electrice aplicate rezistorului $R_{\rm S}$ sunt periodice în timp, având perioada $T=1/{\rm V}$, egală cu aceea a rețelei de curent alternativ. O astfel de tensiune nu poate fi folosită ca tensiune continuă pentru alimentarea circuitelor electronice. Dacă s-ar alimenta în acest mod un radioreceptor, de exemplu, în locul programului dorit în difuzor s-ar auzi un zgomot puternic cu frecvența de 50 Hz (numit uneori brum).

Pentru a constitui un circuit de redresare propriu-zis, care să furnizeze la ieșire o tensiune continuă, este necesar ca montajului din fig. 4.10, a, să i se adauge un element care să elimine variațiile în timp ale tensiunii redresate. Acest element (filtru de netezire) constă în majoritatea cazurilor dintr-un condensator C (numit uneori condensator de filtrare) (fig. 4.11, a). Atunci când polaritatea tensiunii alternative din secundarul transformatorului TR este cea indicată în paranteze, dioda D – fiind polarizată direct – permite trecerea curentului electric. În timpul în care dioda conduce, datorită faptului că circuitul de încărcare format din secundarul transformatorului și diodă are o rezistență mică, condensatorul se încarcă rapid până la valoarea $u = \sqrt{2} U_1 - U_{desc} \sim \sqrt{2} U_1$ a tensiunii electrice dintre cele două armături ale sale. Dioda D nu permite descăr-

tensiunii electrice dintre cele două armături ale sale. Dioda D nu permite descărcarea condensatorului prin spirele înfășurării secundare a transformatorului TR, curentul electric trebuind să circule în acest caz în sens invers celui permis de diodă. În cazul în care lipsește consumatorul $(R_S \to \infty)$ și este condensatorul de filtrare ideal, fără pierderi, tensiunea u dintre armăturile condensatorului C, care este totodată și tensiunea de ieșire a redresorului, este constantă în timp și are valoarea $\sqrt{2}\,U_1$ și polaritatea indicată în figura 4.11, a. Dacă dorim să obținem la ieșire o tensiune continuă cu polaritatea inversă celei indicate în figură trebuie să conectăm invers dioda D în circuit (cu catodul spre înfășurarea secundară a transformatorului).

Atunci când la ieşirea redresorului (între punctele c și c') este conectat un consumator, presupus aici a fi rezistorul R_s , în intervalul de timp în care tensiunea electrică de la bornele secundarului transformatorului TR este mai mică decât tensiunea dintre armăturile condensatorului $(u_1 < u)$, dioda D nu conduce, fiind polarizată invers, iar condensatorul C se descarcă pe rezistorul R_s . Rezistența acestuia fiind mult mai mare decât rezistența circuitului de încărcare, descărcarea se produce mai lent, astfel că tensiunea u pe condensator scade relativ puțin până în momentul în care începe o nouă încărcare a acestuia (fig. 4.11, b).

Fig. 4.11, *a, b.*

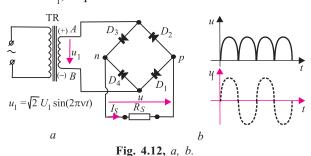
Deoarece redresează o singură alternanță a tensiunii electrice alternative de la intrarea sa sau, cu alte cuvinte, energia transferată consumatorului este preluată de la sursa de curent alternativ pe timpul unei singure alternanțe (a unei semiperioade), acest tip de redresor poartă numele de *redresor monoalternanță*.

Dacă la ieșirea redresorului este conectat un rezistor de sarcină (un consumator) se observă că tensiunea de ieșire nu este, riguros vorbind, constantă în timp. Această tensiune are o componentă continuă U_0 și o componentă alternativă de amplitudine $\Delta u/2$ cu frecvența v. Se definește factorul de ondulație γ ca fiind raportul $\gamma = \Delta u/U_0$.

Așadar filtrul de netezire (în cazul montajului din figura 4.11, a, constituit din condensatorul C) nu elimină complet variațiile în timp ale tensiunii de la ieșirea redresorului. În practică se caută să se obțină un factor de ondulație γ suficient de mic astfel încât variațiile $\pm \gamma U_0/2$ ale tensiunii de alimentare să nu afecteze functionarea normală a circuitului electronic alimentat de redresorul respectiv.

Valoarea amplitudinii componentei alternative, $\Delta u/2$, se poate evalua cu uşurință folosind legea conservării sarcinii electrice: la echilibru, sarcina electrică acumulată de condensator, atunci când dioda D conduce, $\Delta q = C \cdot \Delta u$, trebuie să fie egală cu sarcina electrică transferată consumatorului în timpul descărcării sale: $\Delta q \approx I_0 T$, unde T = 1/v reprezintă perioada tensiunii electrice alternative aplicate la intrarea redresorului, iar I_0 intensitatea medie a curentului electric prin sarcină. Rezultă că:

$$\Delta u = \frac{I_0}{vC} = \frac{U_0}{vR_sC}.$$

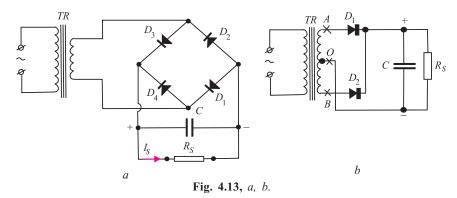

Pentru un consumator dat, U_0 și $R_{\rm S}$ (sau I_0) sunt fixate, astfel că pentru a obține o valoare cât mai mică a factorului de ondulație este necesar să mărim fie frecvența tensiunii de alimentare, fie capacitatea condensatorului de filtrare. Pentru redresorul din fig. 4.11, a, nu este posibilă decât a doua cale, frecvența rețelei electrice neputând fi schimbată. Pentru acest tip de redresor, pentru un consumator dat, amplitudinea componentei alternative a tensiunii redresate va avea valoarea maximă impusă de proiectant $\Delta u_{\rm max}/2$, atunci când capacitatea C a condensatorului de filtrare va avea valoarea:

$$C \ge \frac{I_0}{v\Delta u_{\text{max}}} \text{ sau } C \ge \frac{U_0}{vR_s\Delta u_{\text{max}}}.$$

4.2.6. Redresorul dublă alternanță

Să considerăm circuitul din fig. 4.12, a, format din transformatorul TR, al cărui primar este conectat la rețeaua de curent alternativ, 4 diode semiconductoare $D_1 - D_4$ montate în punte presupuse identice și rezistorul R_S . Notăm cu U_1 și v, valoarea efectivă a tensiunii electrice alternative și respectiv frecvența acesteia existentă la bornele secundarului transformatorului TR. Atunci când polaritatea tensiunii electrice din secundarul transformatorului TR este cea indicată în figură între paranteze, diodele D_1 și D_3 sunt polarizate direct, în timp ce

diodele D_2 și D_4 sunt polarizate invers. În acest caz în circuitul secundarului transformatorului se stabilește un curent electric, care circulă pe următorul traseu: capătul A al secundarului transformatorului TR, dioda D_3 , rezistorul R_S , dioda D_1 , capătul B al secundarului transformatorului TR.



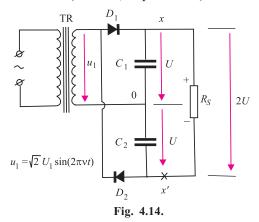
Când tensiunea electrică din secundarul transformatorului TR își schimbă polaritatea, diodele D_2 și D_4 sunt polarizate direct, în timp ce diodele D_1 și D_3 sunt polarizate invers. În acest caz, în circuitul secundarului transformatorului se stabilește un

curent electric care circulă pe umătorul traseu: capătul B al secundarului transformatorului TR, dioda D_4 , rezistorul R_s , dioda D_2 , capătul A al secundarului transformatorului TR.

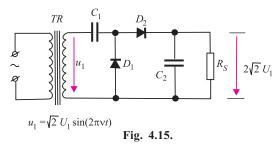
Tensiunea electrică aplicată între capetele rezistorului R_s a cărei variație este prezentată în figura 4.12, b are valoarea maximă $\sqrt{2}\,U_1 - 2U_{desc}$, U_{desc} fiind tensiunea de deschidere a diodelor $D_1 - D_4$. S-a luat $2U_{desc}$ deoarece pentru fiecare alternanță a tensiunii alternative circuitul parcurs de curentul redresat conține două diode. Examinând graficul din figură constatăm că, spre deosebire de cazul redresorului monoalternanță curentul electric circulă prin sarcină în ambele semi-perioade ale tensiunii alternative. Din acest motiv montajul respectiv poartă numele de $redresor\ dublă\ alternanță$. De asemenea, observăm că tensiunea aplicată la bornele rezistorului R_s variază periodic, frecvența sa fiind de două ori mai mare decât frecvența tensiunii alternative din secundarul transformatorului TR.

Ca și în cazul redresorului monoalternanță, pentru a obține o tensiune continuă este necesar să adăugăm circuitului un filtru de netezire, ca în figura 4.13, a). În acel montaj filtrul de netezire constă în condensatorul C. Fenomenele fizice legate de prezența condensatorului C sunt identice cu cele descrise în cazul redresorului monoalternanță. Pentru redresorul dublă alternanță, compo-

nenta alternativă a tensiunii redresate are frecvența 2v. Relațiile obținute în cazul redresorului monoalternanță rămân valabile și în cazul redresorului dublă alternanță dacă se înlocuiește v cu 2v. Compararea rezultatelor duce la concluzia că, pentru aceeași rezistență de sarcină și aceeași valoare a capacității condensatorului de filtrare, amplitudinea componentei alternative a tensiunii redresate este de două ori mai mică în cazul redresorului dublă alternanță decât în cazul redresorului monoalternanță. Acesta este un avantaj al redresorului dublă alternanță. Un alt avantaj este acela că tensiunea inversă maximă aplicată fiecărei diode din punte este de două ori mai mică decât în cazul redresorului monoalternanță. În figura 4.13, b, este prezentată o altă variantă a redresorului dublă alternanță.

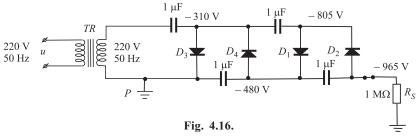

Secundarul transformatorului *TR* este prevăzut cu o priză mediană. Prin priză mediană înțelegem o conexiune electrică efectuată la jumătatea numărului de spire al înfășurării.

Tensiunile electrice din fiecare dintre capetele secundarului (A sau B) și priza mediană (O) sunt în orice moment egale ca amplitudine și în opoziție de fază. În funcție de polaritatea tensiunii electrice din secundarul transformatorului, diodele D_1 și D_2 conduc, pe rând, câte o semiperioadă.


4.2.7. Redresoare cu multiplicare de tensiune

Alimentarea unor circuite electronice necesită tensiuni continue mari care nu pot fi obținute cu montajele obișnuite de redresare. Una dintre soluții este folosirea unor redresoare cu multiplicare de tensiune (dublare, triplare etc.). Avan-

tajul acestei metode constă în faptul că se utilizează un transformator cu tensiune mică în secundar, deci care nu necesită o izolație specială. Una dintre schemele cele mai simple de redresor cu dublare de tensiune este prezentată în figura 4.14. Montajul constă, de fapt, din două redresoare monoalternanță cu intrările legate în paralel și ieșirile legate în serie. Primul redresor constă din dioda D_1 și condensatorul C_1 . La ieșirea sa (între punctele x și 0) se obține o tensiune con-



tinuă pozitivă U. Al doilea redresor constă din dioda D_2 și condensatorul C_2 . Datorită sensului în care este orientată dioda D_2 în circuit, la ieșirea acestui redresor (între punctele x' și 0) se obține o tensiune continuă negativă -U. În cazul în care capacitățile condensatoarelor de filtrare C_1 și C_2 sunt suficient de mari, atunci, practic $U \approx \sqrt{2} U_1$, unde prin U_1 s-a notat valoarea efectivă a tensiunii din secundarul transformatorului de rețea TR. Tensiunea continuă du-

blată se culege între punctele x și x'. Valoarea sa va fi $U - (-U) = 2U \approx 2\sqrt{2}\,U_1$, ceea ce înseamnă dublul amplitudinii tensiunii alternative din secundarul transformatorului de rețea. În figura 4.15 este prezentată o altă variantă de redresor cu dublare de tensiune.

Această schemă prezintă avantajul că rezistorul de sarcină și transformatorul au un punct comun numit masă¹ care poate fi legat la pământ. Condensatorul C_1 este încărcat prin dioda D_1 într-o alternanță la valoarea de vârf (amplitudinea) $\sqrt{2}\,U_1$ a tensiunii u_1 din secundar. În alternanța următoare, tensiunea de pe C_1 însumată cu tensiunea u_1 încarcă C_2 la o tensiune egală cu $\sqrt{2}\,U_1$. Prin conectarea în serie (în "cascadă") a n circuite (celule) ca cel din figura 4.16 se obține o multiplicare de 2n ori a tensiunii de ieșire a unei celule, adică o tensiune finală egală cu $2n\sqrt{2}\,U_1$.

Asemenea redresoare cu multiplicare 2n a tensiunii sunt folosite într-o gamă foarte largă de aplicații, ca surse de înaltă tensiune. Tensiunea de ieșire poate fi pozitivă sau negativă, în funcție de modul în care sunt orientate diodele din circuit. În figura 4.16 este prezentată schema practică a unui astfel de multiplicator, la ieșirea căruia s-au măsurat față de masă -965 V pe un rezistor de sarcină de $1 \text{ M}\Omega$. Raportul de transformare al transformatorului de rețea este 1:1. Toate diodele sunt de tipul 1N4007. Pe schemă au fost notate tensiunile continue măsurate în punctele respective.

4.2.8. Stabilizator de tensiune cu diodă Zener

Stabilizatorul de tensiune este un circuit ce asigură la ieșire o tensiune constantă în condițiile în care tensiunea de intrare sau intensitatea curentului prin sarcină variază între anumite limite. Unul dintre cele mai simple stabilizatoare de tensiune continuă este stabilizatorul cu diodă Zener.

¹ În montajele electronice există – de regulă – o bornă comună (punct) a circuitelor din montaj, punct comun numit *masa*. Tensiunile din montajele electronice sunt întotdeauna raportate la potențialul masei, considerat potențial de referință, adică egal cu zero. În unele cazuri (fig. 4.16) punctul de masă este legat la pământ pentru evitarea apariției unor supratensiuni între anumite puncte ale circuitelor.

Diodele Zener sunt diode speciale, a căror caracteristică curent-tensiune este extrem de abruptă în regiunea de străpungere. În regiunea de străpungere, tensiunea dintre anodul și catodul diodei Zener polarizată invers rămâne constantă pentru un interval destul de larg de valori ale intensității curentului electric prin diodă. Această tensiune se numește tensiune Zener, U_z , valoarea sa depinzând de parametrii constructivi ai diodei.

Fiecare tip de diodă Zener este caracterizat de o anumită tensiune Zener. În figura 4.17 este prezentată schema unui stabilizator de tensiune cu diodă

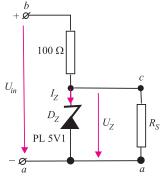


Fig. 4.17.

Zener DZ. În schemele electronice, pentru dioda Zener se utilizează un simbol special. Tensiunea de intrare U_{in} se aplică între punctele b și a, în timp ce tensiunea de ieșire stabilizată se culege între punctele c și a ale circuitului. Evident, montajul funcționează ca stabilizator numai dacă tensiunea de intrare este mai mare decât tensiunea Zener: $U_{in} > U_Z$.

Pentru cazul particular al schemei din figură tensiunea de ieșire stabilizată este de cca. 5,1 V.

Rezistorul R are rolul de a limita intensitatea curentului electric prin diodă. Valoarea sa trebuie calculată astfel încât, în orice condiții, intensitatea curentului electric prin dioda Zener să nu depășească valoarea maximă admisibilă indicată în catalog. Pentru dioda PL5V1, folosită ca exemplu, acest curent $I_{Z_{max}}$ are valoarea de 180 mA. Intesitatea curentului prin dioda Zener este maximă atunci când stabilizatorul lucrează în gol (când lipsește sarcina sau $R_s \to \infty$).

Aşadar,
$$R > \frac{U_{in \max} - U_Z}{I_{Z,\max}}$$
.

R nu poate fi ales oricât de mare, deoarece regimul de funcționare al diodei Zener iese din regiunea de străpungere la curenți mici. Tensiunea stabilizată, obținută cu ajutorul circuitului din figură, nu poate fi modificată sau ajustată. Schimbarea valorii tensiunii stabilizate se face schimbând tipul de diodă folosit în montaj.

Dacă, de exemplu, dorim ca la ieşirea montajului să avem o tensiune stabilizată de cca. 4 V trebuie să înlocuim dioda Zener existentă cu o diodă Zener de tip PL3V9. Se pot folosi diode Zener legate în serie. În acest caz tensiunea Zener echivalentă este egală cu suma tensiunilor Zener caracteristice diodelor înseriate.

Exerciții. Probleme

1. Printr-un fir de cupru de grosime 5 mm trece un curent de intensitate 0,5 A. Cunoscând rezistivitatea cuprului $(1,72 \cdot 10^{-8} \ \Omega \cdot m)$ și sarcina electrică elementară $(1,6 \cdot 10^{-19} \ C)$, să se calculeze forța medie rezultantă care acționează asupra electronului de conducție.

R:
$$F = 3.1 \cdot 10^{-20}$$
 N.

- **2.** Dacă un material semiconductor prezintă o dopare omogenă cu donori și acceptori în concentrații egale, ce tip de conducție posedă?
- 3. Este posibil să se obțină o joncțiune pn prin aducerea în contact mecanic a unui semiconductor p cu un semiconductor n?
- 4. Să se calculeze intensitatea cîmpului electric într-o joncțiune pn avînd lărgimea de $0.05 \mu m$, iar tensiunea corespunzătoare barierei de potențial de 0.2 V.

R: $4 \cdot 10^6$ V/m.

5. Să se calculeze densitatea de curent pentru dioda semiconductoare avînd aria secțiunii de 10⁻² mm², străbătută de un curent avînd intensitatea de 100 mA.

R: 10^7 A/m².

6. La oricare dintre montajele de redresare examinate, tensiunea redresată (pulsatorie) are două componente: o componentă continuă și una alternativă (pulsația sau ondulația, cum se mai spune). Dacă frecvența rețelei este 50 Hz, care este frecvența componentei alternative la redresarea monoalternanță și la redresarea bialternanță?

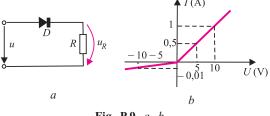
R: 50 Hz; 100 Hz.

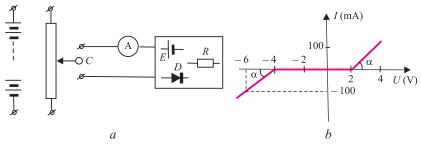
7. O diodă din Si are intensitatea curentului invers de saturație 2,5 μ A. Să se determine: a) intensitatea curentului care trece prin diodă când aceasta este polarizată direct cu tensiunea 0,3 V. ($U_T = kT/e = 25$ mV); b) temperatura mediului în care se află dioda semiconductoare.

R: 406,9 mA; 26,7°C.

8. La oricare dintre montajele de redresare examinate, tensiunea redresată (pulsatorie) are două componente: o componentă continuă și una alternativă. Dacă frecvența rețelei este 50 Hz, care este frecvența componentei alternative la redresarea monoalternanță și la redresarea bialternanță?

R: 50 Hz; 100 Hz.




Fig. P.9, a, b.

- 9. Să se reprezinte grafic, în funcție de timp, tensiunea la bornele rezistorului cu rezistența $R=10 \Omega$ din figura P. 9, a. Caracteristica curenttensiune a diodei redresoare este dată în figura P. 9, b. Tensiunea aplicată la bornele de intrare este $u=U\sin\omega t$ cu U=20 V.
- 10. Cutia închisă din figura P. 10, *a* conține surse de tensiune continuă (de rezistență internă neglijabilă), rezistoare și diode ideale. (Prin diodă ideală se înțelege dioda a cărei conductivitate este infinită în conducție directă și zero în tensiune inversă; în momentul atingerii tensiunii zero la bornele ei, dioda ideală se consideră "deschisă").

În figura P. 10, b este reprezentat graficul variației intensității curentului prin rețeaua din cutie în funcție de tensiunea continuă U aplicată la borne.

a) Să se completeze schema de alimentare în tensiune a cutiei, astfel încât tensiunea U să capete valori pozitive sau negative prin deplasarea cursorului C într-una sau – respectiv – în cealaltă jumătate a reostatului divizor de tensiune. Numărul acumulatoarelor care alcătuiesc bateria este par. Tensiunea U se măsoară cu un voltmetru electronic (adică un voltmetru având rezistență internă foarte mare).

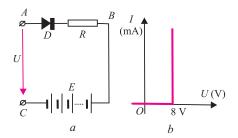

b) Să se stabilească două variante ale schemei retelei din cutie compatibile cu caracteristica curent-tensiune I, U și valorile mărimilor ce caracterizează componentele ei.

Fig. P.10. *a, b.*

- 11. Montajul din figura P.11, a este alimentat la o tensiune maximă 220 V și frecvență 50 Hz. T.e.m. a bateriei este 200 V. Să se determine:
- a) valoarea maximă a tensiunii la bornele rezistorului;
- b) intervalul de timp pentru care dioda este deschisă.

Se va aproxima caracteristica curent-tensiune a diodei cu linia frântă din figura b. Se dă $\arcsin(20.8/22) \approx 71^{\circ}$.

Fig. P.11. a, b

R: b) 2,1 ms.

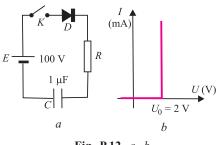


Fig. P.12, a, b.

12. O diodă semiconductoare este legată în serie cu un rezistor R, un condensator C și o sursă E de curent continuu (figura P. 12, a). Caracteristica curent-tensiune idealizată a diodei este prezentată in figura P. 12, b. Se închide întrerupătorul *K*.

Care este căldura disipată în rezistor? R însumează rezistența rezistorului, a sursei, a diodei în regim de conducție și a conductorilor (sârmelor) de legătură.

R: 4,8 mJ.

4.3. Tranzistorul cu efect de câmp (TEC)*

Tranzistorul este un dispozitiv semiconductor realizat, în general, din două jonctiuni pn, având trei terminale de legătură. După modul de realizare, există mai multe tipuri de tranzistoare, cum ar fi: tranzistoare cu efect de câmp, tranzistoare bipolare, tranzistoare unijoncțiune etc.

Tranzistoarele cu efect de câmp (TEC) se bazează pe controlul efectuat de un câmp electric asupra curentului electric ce trece prin dispozitiv. Curentul electric

trece printr-un *canal* conductor a cărui conductanță $G_c = \frac{1}{R} = \sigma \frac{S_0}{I_c}$ depinde de

intensitatea \vec{E} a unui câmp electric de control, perpendicular pe canal, de lungime L și secțiune $S_0(\vec{E} \perp \overline{L})$. Curentul electric este format de un singur tip de purtători de sarcină mobili, care se deplasează, de la un capăt al canalului numit sursă (S) către celălalt capăt numit drenă (D). Deplasarea purtătorilor are loc datorită diferenței de potențial (tensiunii) aplicate între drenă si sursă, U_{DS} . Câmpul electric care modifică conductanța canalului provine din tensiunea aplicată pe un al treilea electrod, U_{GS} electrodul de control numit grilă (G) ("gate", în limba engleză).

Tranzistoarele cu efect de câmp se mai numesc și *tranzistoare unipolare*, deoarece la conducția curentului electric participă un singur tip de purtători mobili și anume purtătorii majoritari din canal.

- După tipul de purtători care formează curentul, tranzistoarele cu efect de câmp se împart în două categorii: TEC cu canal n, în care purtătorii sunt electroni și TEC cu canal p, în care purtătorii sunt goluri.
- După modul de realizare a controlului conductanței canalului, *TEC* se împart în:
 - TEC cu joncțiuni (TEC-J);
- TEC cu grilă (poartă) izolată, având la bază structura metal-oxid-semiconductor (MOS), numite prescurtat TEC-MOS (sau MOSFET, în engleză).

4.3.1. Tranzistorul cu efect de câmp cu joncțiuni (TEC-J)*

Modificarea conductanței canalului într-un *TEC-J* are la bază următoarele proprietăți ale unei joncțiuni (subcapitolul 4.2.1):

- regiunea de trecere (de sarcină spațială, săracă în purtători liberi) se comportă ca un mediu izolator;
- adâncimea de pătrundere a regiunii de trecere într-o zonă a unei joncțiuni este cu atât mai mare, cu cât concentrația impurităților, în zona respectivă, este mai mică decât în cealaltă zonă;
- lățimea regiunii de trecere creşte odată cu tensiunea inversă aplicată joncțiunii.

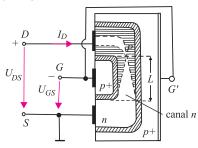
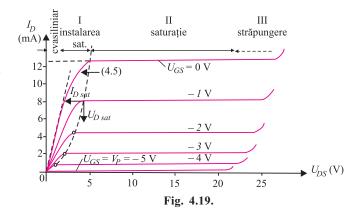


Fig. 4.18.


În figura 4.18. se ilustrează structura și funcționarea TEC-J cu canal n. Canalul este realizat în volumul substratului p^+ . Grila G este o joncțiune obținută prin difuzia unei regiuni p^+ în zona de la suprafață a canalului. Astfel, canalul propriu-zis, a cărui conductanță este modificată prin "efect de câmp", este constituit din porțiunea centrală a regiunii n, de lungime L, cuprinsă între cele două joncțiuni p^+n .

Substratul p^+ constituie cea de-a două grilă,

terminalul său G' fiind conectat la G. Deci, tensiunea U_{GS} se aplică simultan ambelor joncțiuni (JP^+N) , polarizate invers.

În figura 4.19. se reprezintă caracteristicile curent-tensiune: $I_D = f(U_{DS})$, pentru U_{GS} parametru.

Comanda privind intensitatea curentului de drenă I_D se obține variind secțiunea canalului, deci conductanța lui, prin modificarea extinderii regiunilor golite

(suprafețele hașurate orizontal) ale celor două JP⁺N corespunzător tensiunii de polarizare inverse $U_{GS} < 0$.

În descrierea funcționării TEC-J există o anumită valoare a tensiunii de grilă $U_{GS} = V_{P}$, numită "tensiune de prag" (sau penetrație). Tensiunea de prag V_{P} este acea tensiune de grilă începând de la care cele două regiuni golite de purtători liberi se separă, apărând canalul n și, totodată, curentul de drenă $(U_D \approx 0, I_D \neq 0)$. Pentru caracteristicile din figura 4.19, $V_p = -5$ V. Dacă se mărește treptat tensiunea de drenă U_{DS} menținând o tensiune de grilă constantă, de exemplu $U_{GS} = -1 \text{ V } (>V_P)$, se constată că la valori mici pentru U_{DS} caracteristica curenttensiune este liniară, tranzistorul comportându-se ca un rezistor a cărui rezistență este comandată prin tensiunea de grilă. Acest tip de rezistor este folosit în electronică. La tensiuni de drenă mai mari, creșterea intensității I_D a curentului de drenă este din ce în ce mai mică. Când U_{DS} ia valoarea

$$U_{D,sat} = U_{GS} - V_{P}, \tag{4.5}$$

 $U_{D \ sat} = U_{GS} - V_{P}, \eqno(4.5)$ intensitatea curentului de drenă atinge o valoare $I_{D \ sat}$ și rămâne (cvasi)constantă. Aceasta este "regiunea de saturație" a caracteristicilor, delimitată la stânga de curba cu ecuația scrisă mai sus.

Ținând seama de cele anterior prezentate, explicația comportării tranzistorului TEC-J rezultă din figurile 4.18. și 4.19. Dacă la $U_{DS} \approx 0$ (și $U_{GS} = -1V = \text{const.}$) regiunile golite sunt cele hașurate oblic, la $U_{DS} = U_{Dsat}$ ele s-au extins cu suprafețele hașurate orizontal. Extinderea este neuniformă, mai largă spre drenă, fiindcă acolo polarizarea inversă este cea mai ridicată. Acest lucru se întâmplă pentru că în regiunea drenei potențialul este mai ridicat datorită căderii de tensiune din interior, creată de curentul de drenă, la care se adaugă și tensiunea aplicată din exterior U_{GS} . Prin urmare, canalul devine obturat (penetrat) în acel punct, P, unde tensiunea de polarizare inversă pe fiecare joncțiune atinge valoarea $U_{\rm GS}-U_{\rm D\,sat}$, adică tensiunea de prag $V_{\rm P}$ conform relației 4.5. $V_{\rm P}$ este de ordinul unităților de volți iar $I_{D sat}$ are valorile cuprinse între unități și zeci de mA.

De precizat că nu se obține o tăiere completă a curentului de drenă, ci o (cvasi)saturare a sa, intensitatea curentului, I_D rămânând, practic, constantă, ceea ce indică faptul că nu se realizează o obturare completă a canalului, pentru $U_{DS} \ge U_{D, sat}$ existând, de fapt, o secțiune foarte mică, dar finită a acestuia, un "canal rezidual", în vecinătatea drenei.

În unele lucrări se consideră însă că, după contopirea regiunilor de trecere, purtătorii majoritari intră în regiunea de sarcină spațială fiind colectați de drenă, la fel cum se întâmplă – se va vedea – în regiunea de sarcină spațială de la colectorul unui tranzistor bipolar.

Exercițiu: să se verifice numeric formula (4.5) pentru UGS = -1 V, folosind figura 4.19.

4.3.2. Tranzistoare cu efect de câmp (TEC) cu poartă izolată*

Tranzistoarele cu efect de câmp cu poartă izolată au o structură de tip metal-izolator-semiconductor (MIS). Electrodul metalic poartă (grilă) G al acestor tranzistori este separat de semiconductor printr-un strat izolator foarte subțire (tipic, sub 2,5 mm). În cazul în care stratul izolator este realizat din oxid (SiO₂) tranzistorii poartă numele de *TEC-MOS* (*MOSFET*, în engleză). După modul de formare a canalului de conducție al curentului electric, tranzistorii *TEC-MOS* se clasifică în două categorii:

- a) TEC cu canal indus sau cu strat de inversiune sau îmbogățit;
- b) TEC cu canal inițial sau cu strat sărăcit.

Canalele pot fi de tip n sau de tip p.


Circuitele integrate actuale au ridicat tranzistorul *TEC-MOS* la rangul de dispozitiv reprezentativ al electronicii. Aceste tranzistoare sunt frecvent utilizate în realizarea rezistoarelor de sarcină cu rezistență comandată prin tensiune și în realizarea circuitelor logice.

Din punct de vedere istoric, primul tranzistor propus spre realizare a fost tocmai cel de tip *TEC-MOS* (1960). Necesitând o tehnologie pretențioasă, realizarea lui a început abia în anul 1960.

În acest paragraf, TEC-MOS va fi prezentat în varianta canal n indus.

4.3.2.1. TEC-MOS cu canal indus tip n^*

Elemente constructive — Tranzistorul MOS este o componentă electronică activă cu patru terminale: sursa (S), poarta (G), drena (D) și substratul (B). Al patrulea terminal (B) conectat la substratul (D) se numește bază și se leagă electric,

de obicei, la sursă (S), acesta fiind și referință de potențial ($V_S = 0$). În figura 4.20 se prezintă o structură de tranzistor MOS cu canal n, ale cărui date geometrice sunt: L – lungimea canalului, Z – lățimea canalului, t_{ox} – grosimea oxidului de sub poartă, h – grosimea canalului.

Drena se definește ca fiind acel capăt al canalului care are

un potențial (V_D) mai mare decât al celuilalt capăt (V_S) , care devine, astfel, sursă $(V_D \ge V_S)$, cu $V_S = 0$ potențial de referință).

Prin aplicarea unei tensiuni pozitive $(U_{GS}>0)$, electronii liberi din interiorul semiconductorului vor fi atrași în număr tot mai mare; în măsura în care U_G crește spre interfața oxid-semiconductor, se vor acumula în număr mare în regiunea superficială a stratului p – semiconductor între sursă și drenă. Ca urmare, pentru o anumită valoare V_p a tensiunii de grilă $(U_{GS}=V_p)$, numită tensiune de prag, între sursă și drenă va lua naștere un strat de inversiune numit canal de conducție de tip n, de lungime L. Distanța L dintre sursă și drenă este de aproximativ $(0,5\div4)$ mm pentru tranzistoarele amplificate și de cca. $(20\div40)$ mm pentru TECMOS folosiți ca rezistoare de sarcină.

Tensiunea de prag, V_p , la care apare canalul se consideră ca fiind tensiunea U_{GS} pentru care concentrația electronilor din canal devine egală cu concentrația golurilor din restul semiconductorului (p-Si).

Odată cu formarea stratului de inversiune, în apropierea acestuia va avea loc o sărăcire de electroni, iar golurile lor vor fi îndepărtate spre interiorul semiconductorului, lăsând în loc ioni negativi (ai atomilor de impurificare) care formează o sarcină negativă, fixă.

Această sarcină spațială există atât în regiunea canalului de grosime mică, h, cât – în continuare – și în afara lui sub sursă și drenă prin regiunile golite ale joncțiunilor sursă-substrat și drenă-substrat în volumul semiconductorului, întinzându-se, cu atât mai mult, cu cât $U_{GS}(>V_p)$ este mai mare. Aplicând o tensiune

între drenă și sursă $U_{DS} > 0$ pentru o tensiune $U_{GS} > V_P$ prin canal va curge curentul electronic de intensitate $I_D \neq 0$. Dependența curent-tensiune $I_D = f(U_{DS})$, cu tensiunea U_{GS} parametru, va fi la fel ca la tranzistorii TEC-J, după cum se observă pe figura 4.21.

Pentru tensiuni U_{DS} mici, canalul este practic echipotențial și caracteristica curent-tensiune I_D-U_{DS} poate fi considerată liniară. Acest regim liniar este caracterizat de o rezistență a canalului (R_C) controlată prin tensiunea de poartă U_{GS} .

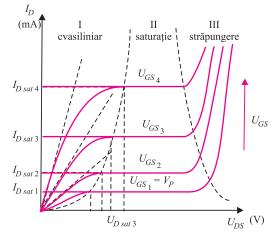


Fig. 4.21.

Prin creșterea tensiunii U_{GS} se obține îmbogățirea cu electroni a canalului, adică creșterea sarcinii de inversiune $|Q_I|$ și, corespunzător, scăderea rezistenței canalului. Regiunea liniară extrapolată este dată de tangentele la curbele $I_D(U_{DS})|_{U_{GS=const.}}$ în punctul $U_{DS}=0$ (fig. 4.22).

Pantele acestor tangente (R_c^{-1}) sunt cu atât mai mari cu cât crește tensiunea U_{GS}

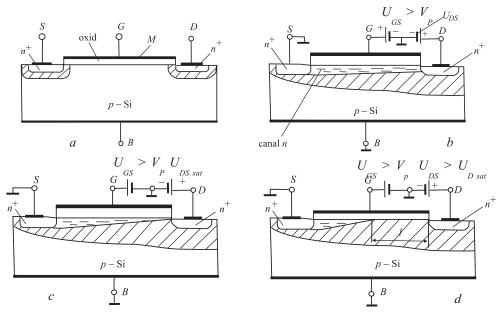


Fig. 4.22. a, b, c, d.

Creșterea tensiunii U_{DS} determină creșterea în continuare a intensității curentului de drenă I_D , dar mai slab decât în variația liniară. Acest fapt se explică prin aceea că potențialul canalului V_c variază crescător de la sursă la drenă, întrucât crește căderea de tensiune I_DR_c pe canal, care devine semnificativă (I_D a crescut). Atunci, tensiunea pe oxid $U_{ox} = U_{GS} - V_S$ scade pe aceeași direcție (Oy), ducând la scăderea sarcinii | Q_I | din canal. Sărăcirea de electroni către drenă determină creșterea rezistenței canalului și, implicit, limitarea creșterii intensității curentului de drenă, I_D . Mărind tensiunea U_{DS} la o anumită valoare U_{DS} sat pentru un U_{GS} dat, canalul se strangulează (tensiunea pe oxid lângă drenă $U_{ox} = U_{GS} - V_c$, devenind insuficientă pentru menținerea stratului de inversiune), instalându-se saturația curentului de drenă, $I_{D \ sat} \approx {\rm const.}$ (figurile 4.22, b, c) canalul luând forma unei pene.

Pentru tensiuni de drenă $U_{DS} > U_{DS \; sat}$ are loc efectul de scurtare a canalului (fig. 4.22, d) iar intensitatea curentului de drenă rămâne aproximativ constantă și egală cu $I_{D \; sat}$.

Lungimea efectivă a porțiunii deschise a canalului devine $L_{\it ef}=L-l$, iar căderea de tensiune pe această porțiune este egală cu $U_{\it DS~sat}$. Restul tensiunii, $U_{\it l}=U_{\it DS}-U_{\it DS~sat}$ cade pe porțiunea golită de purtătorii canalului. Câmpul electric intens asociat tensiunii $U_{\it l}$ antrenează spre drenă electronii existenți la capătul stratului de inversie, curentul de drenă trecând astfel în continuare prin dispozitiv, cu intensitatea constantă, $I_{\it D}={\rm const.}$

La tensiuni de drenă U_{DS} și mai mari poate avea loc *străpungerea* tranzistorului *TECMOS* (zona III din fig. 4.21) unde are loc o creștere abruptă a intensității

curentului de drenă I_D . Străpungerea este determinată de străpungerea atât a joncțiunii pn drenă-substrat, cât și a izolatorului de sub poartă.

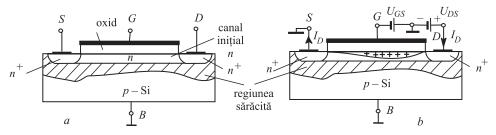
În cazul tranzistoarelor TEC-MOS, majoritatea fabricate din siliciu, străpungerea joncțiunii drenă-substrat este determinată de fenomenul de multiplicare în avalanșă a purtătorilor de sarcină (v. pag. 89), determinând creșterea abruptă (bruscă) a lui I_D cu U_{DS} .

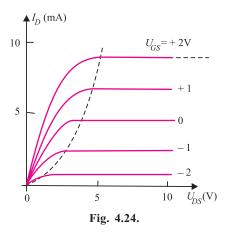
Stratul oxidului izolator se străpunge la tensiuni de poartă relativ mici $(U_{GS} \approx 50 \text{ V})$ datorită grosimii mici a oxidului $(t_{ox} < 0.1 \text{ mm})$. Străpungerea poate avea loc chiar prin simpla atingere a electrodului poartă, deoarece dielectricul conservă capacitiv sarcinile și le acumulează, determinând creșterea rapidă a tensiunii până la valoarea de străpungere. Pentru evitarea străpungerii, unele tranzistoare sunt prevăzute, prin construcție, cu o diodă Zener de protecție încorporată în dispozitiv și conectată între G și S.

Astfel, tensiunea U_{GS} este limitată la valoarea tensiunii Zener, U_{Z}

4.3.2.2. TEC-MOS cu canal inițial tip n^*

Tehnologia *TEC-MOS* cu canal inițial diferă de cea a tranzistoarelor cu strat de inversiune în sensul că între sursă și drenă se realizează fizic un canal inițial, așa cum se observă în figura 4.23, *a*.




Fig. 4.23, a, b.

Datorită existenței canalului inițial, în cazul de față de tip n, rezistența circuitului sursă-drenă este scăzută, între sursă și drenă putând curge curent în cazul aplicării unei tensiuni $U_{DS} > 0$, chiar dacă $U_{GS} = 0$.

La aplicarea unei tensiuni de poartă negative, $U_{GS} < 0$ (fig. 4.23, b) electrodul negativ poartă respinge electronii liberi din canalul n, astfel încât la interfața oxid-canal apare o zonă fără purtători mobili (sarcina zonei fiind pozitivă datorită ionilor donori imobili).

Sărăcirea canalului în purtători mobili majoritari, care sunt electronii, mărește rezistența acestuia. La mărirea în continuare a negativării porții, canalul se îngustează tot mai mult până la strangularea completă, când se instalează regimul de saturație al curentului, $I_{D \ sat} \approx {\rm const.}$ (fig. 4.24).

La aplicarea unei tensiuni pozitive, $U_{\rm GS}>0$, vor fi atrași din substratul p-Si un număr suplimentar de electroni liberi, fapt echivalent cu descreșterea rezistenței și cu creșterea intensității $I_{\rm D}$ a curentului din canal. Se spune că tranzistorul funcționează în "regim de îmbogățire", conductanța canalului crescând.

Din cele spuse reiese că TEC-MOS-ul, ca și TEC-J, funcționează ca un rezistor cu rezistența comandată de tensiunea porții, U_{GS} , pentru intervalul de variație liniară a caracteristicilor $I_D(U_{DS})|_{U_{GS}=const.}$. Din aceste caracteristici rezultă că funcționarea lor, în principiu, este asemănătoare: "acțiunea de comandă" a intensității curentului de drenă prin $efectul\ de\ câmp\ creat\ de\ tensiunea\ de\ poartă, <math>U_{GS}\ singura\ deosebire\ constând\ în faptul că <math>TEC$ - $MOS\ poate\ funcționa\ și\ cu tensiune\ de\ poartă\ pozitivă, <math>U_{GS}\ >\ 0$ (fig. 4.24).

Datorită rezistenței foarte mari a stratului subțire izolator, rezistența de intrare a tranzistorului MOS este foarte ridicată $(10^{12} \div 10^{15})$ Ω . Ca atare, comanda curentului de drenă se realizează cu o cheltuiala foarte mică de putere, ceea ce constituie un principal avantaj al TEC-MOS-urilor. Rezistența ridicată de intrare permite utilizarea lor și într-o serie de aplicații speciale în tehnică: traductoarele de pH, picoampermetre ș.a.

4.3.3. Polarizarea pentru TEC în montaj amplificator*

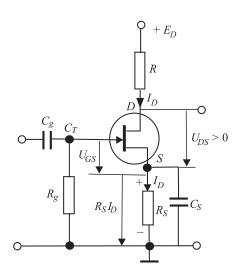


Fig. 4.25. Negativarea automată a porții unui TEC-J cu canal n în montaj amplificator.

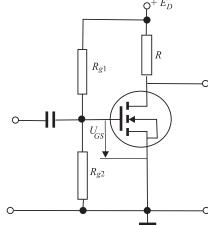
De obicei, alimentarea întregului circuit al tranzistorului se face de la o singură sursă. Această sursă, E_D , se pune în circuitul de drenă și va trebui să asigure polarizarea corespunzătoare drenei unui TEC.

În ceea ce privește polaritatea necesară alimentării porții distingem două situații. Prima situație este cea a tranzistoarelor care lucrează într-un regim de golire a canalului existent la $U_{GS}=0$; TEC-J lucrează întotdeauna într-un astfel de regim, iar un TECMOS cu canal inițial lucrează astfel dacă U_{GS} este cuprins între 0 și V_p . Tensiunea de poartă necesară acestui regim este de semn opus tensiunii de alimentare de drenă.

Soluția negativării automate pentru negativarea grilei pentru un *TEC* se exempli-

fică în schema de alimentare pe un TEC-J cu canal n în figura 4.25. Tensiunea pozitivă de drenă se obține de la sursa E_D . Curentul de drenă I_D trece și prin

rezistorul R_g , pe care apare o cădere de tensiune cu polaritatea figurată; prin R_g necirculând curent deoarece curentul de poartă este nul, iar condensatorul de blocare C_g împiedică trecerea curentului continuu din circuitul exterior, căderea de tensiune pe R_g este zero și, prin urmare:

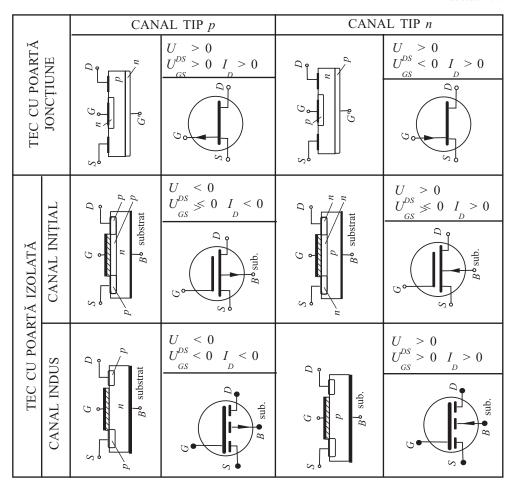

$$U_{GS} = R_S I_D$$
.

Rezistorul R_g este necesar pentru a asigura o legătură galvanică la poartă și are valori de M Ω . Condensatorul $C_{\scriptscriptstyle S}$ decuplează în curent alternativ rezistorul $R_{\scriptscriptstyle S}$ în regim dinamic de funcționare.

În general, se poate afirma că rezistorii R_s din circuitele de poartă realizează o polaritate automată a TEC respective.

A două situație ce poate surveni în alimentarea porții unui TEC este cea a tranzistoarelor care lucrează într-un regim în care U_{GS} crește conductanța canalului față de valoarea de la $U_{GS}=0$; TECMOS cu canal indus lucrează întotdeauna într-un astfel de regim, iar TECMOS cu canal inițial lucrează astfel dacă U_{GS} este de semn opus tensiunii prag V_P .

Tensiunea de poartă necesară acestui regim este de același semn cu tensiunea de alimentare a drenei și se poate obține din aceasta printr-un divizor de tensiune (fig. 4.26). De remarcat că este în general necesar un divizor pentru a obține tensiunea de poartă la valoarea dorită; legarea porții la


Fig. 4.26. Polarizarea prin divizor a porții unui *TECMOS* cu canal indus n într-un montaj amplificator.

sursa de alimentare printr-un rezistor determină o tensiune de poartă egală cu tensiunea de alimentare deoarece curentul de poartă este nul. Pentru tranzistorul cu canal *n* din figura 4.26 rezultă:

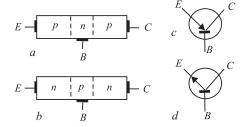
$$U_{GS} = \frac{R_{g2}}{R_{g1} + R_{g2}} E_D. {4.6}$$

În tabelul 4.1 sunt prezentate schematic simbolurile utilizate pentru TEC.

Existența canalului la $U_{\rm GS}=0$ este simbolizată printr-o linie plină și absența lui printr-o linie întreruptă. Sensul săgeții de la borna de substrat indică joncțiunea p-n canal-substrat. Linia de poartă (grilă) este reprezentată despărțit de cea de canal, iar terminalul de grilă, G, este scos printr-o linie perpendiculară pe linia de poartă la mijlocul ei, sau la capătul dinspre sursă.

4.3.4. Tranzistorul bipolar cu joncţiuni p-n*

Tranzistorul bipolar a fost inventat de J. Bardeen, W.H. Brattain (1948) şi modificat şi explicat de W. Shockley (1949). Tranzistorul bipolar are trei borne şi este mult utilizat în circuite de amplificare, separat, sau în circuite integrate. Este numit bipolar pentru că în procesele fizice din acest tranzistor un rol important îl joacă atât purtătorii majoritari cât şi purtătorii minoritari. În comparație cu tranzistorul cu efect de câmp (*TEC*), tranzistorul bipolar are o amplificare mare şi o impedanță de intrare mult mai mică.


Construcție și funcționare – tranzistorul ambipolar este un dispozitiv electronic, alcătuit dintr-un monocristal semiconductor, având trei regiuni al căror tip de conducție alternează. Există tranzistori pnp și tranzistori npn (fig. 4.27, a și b). În figura 4.27, c și d se arată simbolurile respective.

Regiunea semiconductoare mijlocie contribuie simultan la formarea unei regiuni

de trecere cu fiecare dintre regiunile semiconductoare marginale. Regiunile extreme cu același tip de conducție se numesc *emitor*, *E*, și respectiv *colector*, *C*, iar regiunea centrală cu conducție de tip contrar se numește *bază B*.

Considerăm un tranzistor pnp.

Pentru funcționarea tranzistorului, regiunea de trecere emitor-bază (numită și regiune de trecere emitor) se polarizea-ză în sens direct, iar regiunea de trecere

Fig. 4.27, a, b, c. Construcția tranzistoarelor pnp și npn (a și b); simbolurile de reprezentare ale acestora (c și d).

colector-bază (numită regiunea de trecere colector) se polarizează în sens invers (fig. 4.28, *a*).

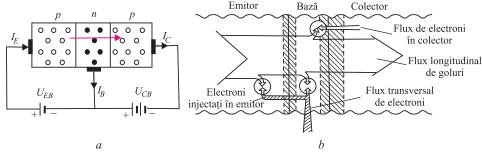


Fig. 4.28. Tranzistorul ambipolar: a) alimentarea tranzistorului *pnp* în conexiunea bază comună (săgeata indică sensul curentului prin tranzistor, curent de goluri); b) secțiune longitudinală prin tranzistor; sunt indicați curenții de purtători, unde s-a figurat și cantitatea mică de electroni ce trec din colector în bază; reiese clar rolul esențial diferit pe care-l joacă cele două componente ale curentului de emitor: componenta de goluri reprezintă componenta utilă, care determină intensitatea curentului din circuitul colectorului; componenta electronică se închide prin circuitul bazei, fapt ce duce la mărirea consumului de energie pe circuitul emitor (circuit de intrare); cercurile indică regiunile unde au loc recombinările.

Pentru obținerea unor performanțe superioare, concentrațiile impurităților în tranzistoare diferă mult în cele trei regiuni: emitorul este puternic dopat, în bază concentrația impurităților donoare are o valoare medie iar în colector concentrația acceptorilor este mică (structură de dopare $p^{++}n^+p$).

Regiunea de trecere emitor va fi străbătută de un curent intens, $I_{E^{\prime}}$ determinat de deplasarea dintr-o regiune în alta a purtătorilor de sarcină majoritari. Deoarece, prin construcție, concentrația impurităților în bază este mai mică decât în emitor, curentul în regiunea de trecere emitor, $I_{E^{\prime}}$, se datorează în special golurilor care trec din emitor în bază, numărul electronilor care trec din bază în emitor fiind mult mai mic.

Datorită grosimii foarte mici a bazei (10,25 mm), mult mai mică decât lungimea de difuzie a golurilor (10⁻²cm), golurile injectate de emitor în bază nu au timp să se recombine cu electronii din bază și difuzează în cea de-a doua regiune de trecere cu excepția unei părți infime (două procente din I_E) care se recombină în

bază. Electronii din bază (ca purtători majoritari), care se recombină cu o parte din golurile injectate din emitor, vor fi completați de electronii primiți de la sursa de alimentare prin borna bazei, care vor determina, la rândul lor, curentul de bază I_B (fig. 4.9, a), sensul acestuia fiind invers sensului de mișcare a electronilor.

În regiunea de trecere a colectorului, polarizată în sens invers, câmpul electric favorizează numai trecerea purtătorilor minoritari dintr-o regiune în alta, deci a golurilor din regiunea n (injectate de emitor) în regiunea colectorului și a electronilor din colector în bază. Deoarece numărul purtătorilor minoritari din colector (electroni) este redus, aceștia dau prin joncțiunea colector un curent de intensitate foarte mică (câțiva microamperi¹). Rezultă $I_0 = I_E - I_B \approx I_E$, deci

$$I_C = \alpha I_E, \tag{4.3}$$

unde α se numește *factor de amplificare* în curent. La tranzistoarele folosite azi, α are valori cuprinse între 0,98 și 0,995.

Deci, curentul în circuitul colectorului este comandat de curentul din circuitul emitorului acesta fiind determinat de tensiunea aplicată între emitor și bază $U_{\rm ER}$.

Din modul de circulație al purtătorilor de sarcină rezultă că rolul determinant în funcționarea tranzistorului *pnp* îl au golurile.

Montajul analizat se numește montaj cu bază comună, deoarece circuitul emitorului și circuitul colectorului au o porțiune comună – baza. În circuitele cu tranzistoare se folosesc în mare măsură și montaje cu emitorul comun.

Amplificarea datorată tranzistorului apare pentru că un curent (cel de emitor) a fost transferat cu foarte mici pierderi dintr-un circuit de rezistență mică într-un circuit de rezistență mare; de aici termenul "*transfer-rezistor*", de la care provine denumirea de tranzistor.

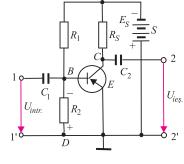
Puterea suplimentară, deci și amplificarea în putere a semnalului obținută în circuitul de colector, este luată sub formă de putere de curent continuu de la sursa din circuitul de colector și transformată în putere de curent alternativ.

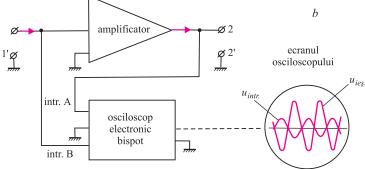
Schema unui etaj de amplificare cu un tranzistor pnp în conexiunea EC este dată în figura 4.29, a. Deoarece electrodul comun (emitorul) circuitelor de intrare și de ieșire este legat la masă, conexiunea EC se mai numește și conexiunea cu emitorul la masă. Golurile sunt emise de emitor (emisie controlată de tensiunea aplicată bazei) și colectate de colector.

În figura 4.29, a se arată o schemă simplă de polarizare a etajului cu emitorul de masă folosind o singură sursă, S, cu t.e.m. continuă, E_S .

Circuitul EBDE este al bazei, iar circuitul ECSE este al colectorului.

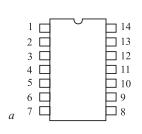
Bornele circuitului de intrare (circuitul bazei) sunt 1 și 1'. Condensatorul C_1 lasă să treacă numai componentele alternative. Tensiunea amplificată $U_{\text{ieș.}}$ se obține între bornele 2 și 2'. Condensatorul C_2 lasă, de asemenea, să treacă numai componentele alternative. În schemele complexe, tensiunea alternativă amplificată se transmite unui circuit. Raportul

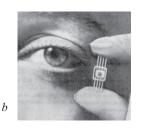

¹ La siliciu mult sub această valoare, adică sub 1 nA.


$$A_{U} = \frac{U_{\textit{ieş}}}{U_{\textit{intr}}}$$

determină amplificarea în tensiune realizată la etaj.

Conexiunea (EC) este cea mai frecvent folosită în amplificatoare.


Figura 4.29. *a*) Etaj amplificator cu tranzistor EFT 342; valori posibile: $C_1 = C_2 = 10 \, \mu\text{F}$; $R_1 = 80 \, \text{k}\Omega$; $R_2 = 15 \, \text{k}\Omega$; $R_S = 5 \, \text{k}\Omega$. Freevența semnalului amplificat este cuprinsă între 50 și 15 000 Hz. b) Vizualizarea tensiunilor u_{int} , și u_{int} .



4.4. Circuite integrate*

Circuitul integrat (CI) (fig. 4.30) este un microcircuit în care dispozitivele semiconductoare constitutive (rezistoare, diode, tranzistoare etc.) sunt asociate inseparabil și pot fi utilizate numai ca atare și nu ca piese separate. Circuitele integrate semiconductoare pot fi *peliculare* (elementele sale sunt pelicule formate pe suprafața unui material dielectric) sau *monolitice* (elementele sunt rea-

Fig. 4.30, a, b, c.

lizate toate în același monocristal de material semiconductor). În continuare va fi prezentată tehnologia *CI* monolitice, cele mai folosite actual.

Procesele utilizate în fabricarea CI monolitice trebuie controlate geometric pe distanțe de ordinul 1 μ m, iar din punct de vedere fizico-chimic și termic, cu o precizie ce depășește cu ordine de mărime tehnologiile clasice.

Dintre materialele semiconductoare, siliciul este cel care s-a impus pentru realizarea CI monolitice. Un prim avantaj pe care-l reprezintă siliciul: spre deosebire de rivalul său, germaniul, pelicula de oxid (SiO_2) care se formează la suprafața plăcuței monocristaline (diametru 8 cm, grosime 0,2 mm) într-un cuptor cu atmosferă oxidantă, este suficient de compactă pentru a putea fi folosită drept mască în procesul de introducere a impurităților.

Măștile utilizate în tehnologia *CI* conțin imaginea multiplicată de mii de ori a regiunii de prelucrat; datorită repetării motivului de mai multe ori, într-un singur proces tehnologic se pot obține mii de circuite integrate.

Structura de circuit integrat se realizează prin introducerea controlată cantitativ şi selectiv-geometric a dopanților. Metodele de introducere a dopanților în monocristal sunt *prin difuzie* sau *prin implantare* de ioni. Pentru oricare dintre metode este necesar un procedeu care să le asigure selectivitatea spațială, *mascarea* – în principal – fotografică. Astfel, prin *fotolitografie*, desenul (tiparul) fiecărui strat al structurii dispozitivului ce urmează a fi realizat în plăcuță este transferat de pe o fotomască (clișeu fotografic) în stratul de oxid. Acest transfer are loc prin folosirea unui material fotosensibil numit fotorezist, care are proprietatea că prin expunere la raze ultraviolete își pierde, datorită polimerizării, solubilitatea în anumiți solvenți.

Procesul are mai multe etape: întâi se depune pe plăcuță, dintr-o soluție de solvent volatil, o peliculă de fotorezist, adeziunea la oxid fiind întărită prin încălzire, după care se face expunerea foto prin masca fotografică și apoi spălarea în solvent selectiv (developarea). Pelicula rămâne doar în porțiunile unde masca a fost transparentă. Plăcuța este apoi introdusă într-o soluție de acid fluorhidric; aceasta dizolvă stratul de oxid neprotejat, fără să atace fotorezistorul

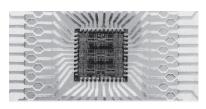


Fig. 4.31.

și nici siliciul. Restul de fotorezist se îndepărtează cu alți reactivi chimici. Astfel rămâne stratul de *oxid gravat*. Operația descrisă se repetă de câte ori este necesar, în diferite variante. De exemplu, o soluție caldă de acid fosforic atacă selectiv aluminiul utilizat într-o etapă finală pentru conexiuni între diferitele elemente de circuit (fig. 4.31).

Precizia de poziționare a fotomăștilor este de ordinul 1 µm.

Stratul de oxid gravat constituie masca pentru introducerea, selectivă, a dopanților în monocristal. Difuzia atomilor dopanți din atmosfera gazoasă conținând, de exemplu, fosfor (într-un cuptor încălzit la 1000°C), dinspre suprafață spre interiorul cristalului se face numai prin porțiunile suprafeței de siliciu neprote-

jate de ${\rm SiO}_2$ (oxidul se comportă ca un strat opac). Adâncimea de pătrundere este determinată de durata de expunere și de temperatură; se obține, de exemplu, un strat de 1 mm adâncime într-o oră, la $1000^{\circ}{\rm C}$ – în cazul fosforului. Controlul difuziei constituie un proces complex, deoarece este realizat cu dopanți succesivi, în etape. La fiecare încălzire are loc și deplasarea atomilor de dopanți introduși în interior.

Pentru tranzistoarele MOS, stratul subțire de oxid are rolul izolatorului între electrodul de comandă (poarta) tranzistorului și canalul de conducție. Este al doilea avantaj major pe care îl prezintă tehnologia siliciului, derivând din proprietățile SiO_2 fiind de data aceasta de natură funcțională. Adică, bioxidul de siliciu este un foarte bun izolator, proprietate intens exploatată în tehnologia circuitelor integrate cu tranzistoare MOS.

Formarea electrozilor metalici se face în vid, prin evaporarea aluminului dintr-un creuzet, obținută prin bombardarea aluminiului cu un fascicul de electroni de mare energie. Grosimea electrozilor este de 1 mm.

După fazele procesului tehnologic de fabricație propriu-zisă urmează *testarea* circuitelor integrate de pe plăcuță (fig. 4.32). Testarea se face bucată cu bucată, cu palpatoare microscopice, operație asistată (controlată) de un calculator. Circuitele defecte sunt însemnate, iar apoi la "spargerea" plăcuței în cipuri separate (*chip* = ciob, în engleză) acestea se înlătură. Cele bune sunt ambalate în capsule standard, care conțin terminalele (pi-

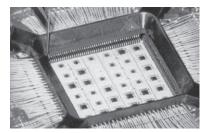


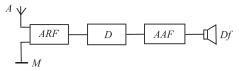
Fig. 4.32.

nii) exterioare (fig. 4.30). Legăturile de la pini la "pad"-urile corespunzătoare de pe cip (*pad* = perniță, suprafață microscopică prevăzută special pentru conexiune) se realizează din fire de aur cu diametrul de 0,02 mm. Circuitul încapsulat este supus testării finale și măsurătorilor.

Defectele în fabricarea CI se diminuează prin îmbunătățirea în cele mai felurite moduri a tehnologiilor. Este suficientă o particulă de praf de câțiva mm sau modificarea aderenței unei fotomăști la plăcuță pentru ca un traseu electric să fie întrerupt sau dimensiunea unei arii în gravura de oxid să se modifice inacceptabil. Numărul de particule de praf într-o sală de fabricație de CI nu trebuie să depășească 3000 pe m³. Creșterea preciziei pentru fiecare etapă a procesului de fabricație a condus la formarea a milioane de elemente pe cip.

Dacă în actuala tehnologie a *CI* se folosesc unul sau două straturi active suprapuse, de la trei-patru straturi active suprapuse (în sandwich) și interconectate între ele prin ferestre realizate în straturile de izolare, se poate vorbi de circuite integrate în trei dimensiuni (3D–CI). Noua concepție conduce la creșterea numărului de componente. Într-o asemenea structură se poate obține, spre exemplu, un procesor de imagine inteligent.

Aplicațiile la tehnologia 3D-CI sunt extrem de multifuncționale.


Prin continua perfecționare a micro(nano)electronicii vor apărea noi generații de calculatoare și aparate electronice cu funcții complexe și cu o fiabilitate nebănuite astăzi.

Aplicațiile dipozitivelor cu semiconductoare

Aplicativitatea și funcționalitatea montajelor și etajelor cu dispozitive electronice, precum și a circuitului integrat prezentate în capitolul 4 pot fi clar evidențiate și prin analiza schemei unui radioreceptor, cu aplificare directă – spre exemplu.

Studiul receptorului de radio. Radioreceptoarele pot fi clasificate în diferite moduri, în conformitate cu diverse criterii. Astfel, din punctul de vedere al principiului schemei folosite, se pot întîlni radioreceptoare cu detecție directă (cu cristal), cu amplificare directă, radioreceptoare tip superheterodină și radioreceptoare digitale. Din punctul de vedere al semnalelor recepționate, există radioreceptoare pentru semnale cu modulație de amplitudine (MA), pentru semnale cu modulație de frecvență (MF) și radioreceptoare ce pot recepționa atât semnalele MA cât și cele MF.

În figura 4.33 este prezentată schema-bloc a radioreceptorului cu amplificare directă ce conține amplificatorul de radiofrecvență ARF, detectorul D și amplificatorul de audio-frecvență AAF cu unul sau mai multe etaje. Antena A captează

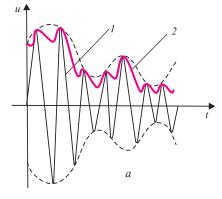
Fig. 4.33. Schema-bloc a radioreceptorului cu amplificare directă: A – antenă; M – masă; ARF – amplificator de radiofrecvență; D – detector; AAF – amplificator de audio-frecvență; Df – difuzor.

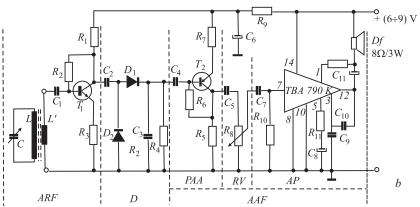
undele electromagnetice și le transformă în oscilații electrice. Circuitul oscilant existent în amplificatorul de radiofrecvență are rolul de a selecta din mulțimea acestor oscilații pe cele dorite. Aceste oscilații au o frecvență egală cu frecvența proprie a circuitului oscilant $f_0 = 1/\sqrt{L \cdot C_\nu}$, unde C_ν este capacitatea

condensatorului variabil, iar L este

inductanța bobinei ce intră în componența acestui circuit. În afară de circuitul oscilant, amplificatorul de radiofrecvență mai conține și un tranzistor, care are rolul de a amplifica aceste oscilații. Oscilațiile de radiofrecvență amplificate sunt transmise etajului detector D.

Cel mai simplu demodulator pentru semnale MA (numit detector) se realizează cu montajul de redresare arătat în figura 4.15. Prin redresarea oscilației modulate aplicate la intrare, tensiunea la bornele grupului R_s , C_2 este aproximativ egală cu valoarea maximă a tensiunii modulate. Într-adevăr, ca și în cazul redresării, condensatorul C_2 se încarcă rapid prin diodă, pînă la valori ale tensiunii care corespund vîrfurilor pozitive ale tensiunii de intrare și se descarcă lent prin rezistorul de valoare mare R_s . Acest proces este ilustrat în figura 4.34, a. Se observă că tensiunea de ieșire urmărește aproximativ înfășurarea (anvelopa) semnalului modulat aplicat la intrare, reproducînd cu aproximație semnalul modulator. Demodularea semnalelor MF se face cu circuite mai complicate care, de obicei, transformă modulația de frecvență în modulație de amplitudine și apoi realizează procesul de detecție.


La ieşirea etajului detector se obține un semnal demodulat. Acesta conține o componentă de audiofrecvență care este amplificată de etajul următor (AAF).


Semnalul de audio-frecvență (AF) amplificat este transformat în vibrații sonore de către difuzor.

În figura 4.34, b este arătată schema de principiu a unui radioreceptor cu amplificare directă alcătuit din blocurile funcționale menționate. Acest radioreceptor funcționează în gama undelor medii (500÷1600) kHz. Se observă că antena exterioară a fost înlocuită cu o bară de ferită pe care s-au pus bobinele L și L'. Bobina L împreună cu condensatorul variabil C_{ν} formează circuitul oscilant necesar acordului. Bobina L', cuplată inductiv cu prima, are rolul de a transmite oscilațiile electrice selectate pe baza tranzistorului T_{1} prin intermediul condensatorului de cuplaj C_{1} . Tranzistorul T_{1} , funcționează ca amplificator. Polarizarea acestui tranzistor se realizează cu ajutorul rezistorului R_{2} . Acest mod foarte simplu de polarizare oferă stabilitate în funcționare în raport cu variația de temperatură atîta timp cât sarcina R_{1} este un rezistor ohmic. (Montajul prezintă și un dezavantaj,

anume că prin rezistorul R_2 astfel plasat se creează un cuplaj direct între ieșire și intrare, cuplaj care determină micșorarea amplificării.)

Etajul detector D este format din diodele D_1 și D_2 , condensatoarele C_3 și C_2 și rezistorul R_4 . Întrucât tensiunea obținută la bornele rezistorului de sarcină R_4 este aproximativ de două ori mai mare decât cea aplicată la intrarea etajului, acest detector se numeste cu dublare de tensiune. Semnalul

Fig. 4.34. *a)* Variația tensiunilor în detectorul cu diodă; I— semnalul MA; 2— semnalul demodulat; b) schema de principiu a unui radioreceptor cu amplificare directă; ARF— amplificator de radiofrecvență; D— detector; AAF— amplificator de audiofrecvență; PAA— preamplificator de audiofrecvență; RV— reglaj volum; AP— amplificator de putere. Valori posibile: $C_1 = C_2 = C_4 = C_5 = 50$ nF; $C_3 = 4.7$ nF; $C_6 = 220$ μF/16V; $C_7 = 0.1$ μF; $C_8 = 100$ μF/12 V; $C_9 = 10$ nF; $C_{10} = 1.5$ nF; $C_{11} = 680$ μF/16 V; $R_1 = R_5 = 6.8$ kΩ; $R_2 = R_6 = 620$ kΩ; $R_8 = R_7 = 47$ kΩ; $R_4 = 10$ kΩ; $R_8 = 100$ kΩ; $R_9 = R_{11} = 1$ kΩ; $R_{10} = 100$ kΩ; $R_{12} = 100$ kΩ; $R_{11} = 100$ kΩ; $R_{12} = 100$ kΩ; $R_{13} = 100$ kΩ; $R_{14} = 100$ kΩ; $R_{15} = 100$

demodulat, obținut la ieșirea detectorului, este aplicat prin condensatorul C_4 amplificatorului de audiofrecvență. Acesta este alcătuit dintr-un etaj preamplificator realizat cu tranzistorul T_2 și un etaj amplificator de putere echipat cu circuitul integrat TBA 790 K. Polarizarea bazei tranzistorului T_2 este realizată cu ajutorul rezistorului R_6 . Semnalul de audiofrecvență util, existent la bornele rezistorului de sarcină R_5 , este aplicat prin condensatorul de cuplaj C_5 potențiometrului R_8 . Prin deplasarea cursorului acestui potențiometru, se poate varia nivelul sonor în difuzor. Condensatorul C_7 aplică semnalul la intrarea circuitului integrat (pinul 7). Ca sarcină pentru circuitul integrat servește bobina mobilă a difuzorului D_f în serie cu condensatorul C_{11} . Difuzorul are rolul unui traductor electroacustic.

Aparatul este alimentat de la o sursă de curent continuu având tensiunea cuprinsă între 6 și 9 V. Rezistorul R_9 , și condensatorul C_6 servesc la filtrarea suplimentară a tensiunii de alimentare. Rezistoarele R_3 și R_7 sunt folosite pentru termostabilizarea regimului de funcționare a tranzistoarelor T_1 și T_2 . Bara de ferită are dimensiunile 55 mm/14 mm/4 mm și este de tipul celor folosite la radioreceptoarele portabile. Bobina L se realizează pe o carcasă izolatoare ce poate culisa pe bara de ferită și are 105 spire din sârmă de cupru emailat cu diametrul de 0,1 mm. Bobina L' are 5 spire din aceeași sârmă și este dispusă la $(1,5\div2)$ mm depărtare de L.

Circuitul integrat liniar românesc TBA 790 K este folosit ca amplificator audio de putere. Acest circuit este capabil să asigure o putere de 2 W pe o sarcină de $(4 \div 8)$ Ω când este alimentat la o tensiune de 9 V. În figura 4.30, a este arătată numerotarea terminalelor (pinilor) la acest circuit integrat.

Radioreceptoarele cu amplificare directă prezintă avantajul unei simplități constructive. Radioreceptoarele moderne, care pot satisface cele mai înalte exigențe, sunt – evident – cele de tip digital.

Test recapitulativ

- 1. Ce se înțelege prin masa efectivă a unui purtător de sarcină mobil?
- 2. Ce semnifică mărimea μ în conducția electrică?
- 3. Pentru un semiconductor (intrinsec, sau extrinsec?) cu ce este egal produsul multiplu $\rho n_i e(\mu_n + \mu_n)$?
- **4.** În cazul unei joncțiuni p^+n , în ce relație de inegalitate sunt concentrațiile N_A și N_D ? Dar pătrunderile l_n și l_p ale regiunii de trecere în, respectiv, cele două zone n și p ale jonctiunii?
 - 5. Ce relație formează pentru un semiconductor cu impurități mărimile σ , e, n, p, μ_n , μ_n ?
- 7. Identitatea $U_T = kT/e$ se numește tensiune termică. Să se scrie ecuația diodei $I_d = f(U_d)$ folosind U_T .
 - **8.** Care este valoarea tensiunii termice pentru 27°C?
 - 9. Care este tensiunea maximă la bornele de ieșire ale redresorului în punte?
 - 10. Ce se înțelege prin redresare dublă alternanță?

5

Fizică nucleară

- 5.1. Proprietăți generale ale nucleului
- 5.2. Energia de legătură a nucleului.

Stabilitatea nucleului

- 5.2.1. Forțe nucleare. Energia de legătură a nucleului
- 5.2.2. Stabilitatea nucleului
- 5.2.3. Modelarea structurii nucleului
- 5.3. Radioactivitatea. Legile dezintegrării radioactive
 - 5.3.1. Radioactivitatea naturală
 - 5.3.2. Legile dezintegrării radioactive
 - 5.3.3. Reacții nucleare
 - 5.3.4. Legi de conservare în reacțiile nucleare
- 5.4. Interacția radiației nucleare cu substanța.

Detecția radiațiilor nucleare. Dozimetrie

- 5.4.1. Radiații formate din particule încărcate electric
- 5.4.2. Interacția radiațiilor formate din particule neutre cu substanța
- 5.4.3. Detecția radiațiilor nucleare
- 5.4.4. Dozimetrie
- 5.4.5. Iradierea naturală și iradierea artificială
- 5.5. Fisiunea nucleară. Reactorul nuclear
 - 5.5.1. Fisiunea
 - 5.5.2. Reacția în lant. Masa critică
 - 5.5.3. Reactorul nuclear
- 5.6. Fuziunea nucleară
 - 5.6.1. Fuziunea
 - 5.6.2. Reactorul cu fuziune
- 5.7. Acceleratoare de particule*
 - 5.7.1. Acceleratorul liniar cu electroni de accelerare (LINAC)
 - 5.7.2. Betatronul
 - 5.7.3. Ciclotronul
- 5.8. Particule elementare*
 - 5.8.1. Interacțiile fundamentale
 - 5.8.2. Caracteristicile comune aleparticulelor elementare
 - 5.8.3. Scurt istoric
 - 5.8.4. Radiația cosmică
 - 5.8.5. Radiația cosmică de fond
- * Teme destinate claselor cu 3 ore pe săptămână la disciplina Fizică.

5

Fizică nucleară

5.1. Proprietăți generale ale nucleului

Structura nucleului

Experimentul lui Rutherford pune în evidență faptul că nucleul are dimensiuni foarte mici ($\approx 10^{-15}$ m), în care este concentrată aproape toată masa atomului și care are sarcina electrică pozitivă.

Modelul protono-neutronic, conform căruia nucleul se compune din *protoni* – având sarcină electrică pozitivă –, și *neutroni* – fără sarcină electrică – a fost confirmat de cercetările experimentale.

În nucleu, neutronul și protonul au proprietăți asemănătoare și sunt denumiți *nucleoni*.

Atomii sunt caracterizați prin numărul de protoni Z, numit număr atomic, care este numărul de ordine din tabelul periodic al elementelor și numărul de masă, A, reprezentând numărul de nucleoni din nucleu și este egal cu valoarea rotunjită la un număr întreg a masei nucleului. Numărul de neutroni, N, este dat de diferența A-Z.

Simbolul elementului chimic X are ca indici numărul atomic și numărul de masă: ${}_{Z}^{A}X$ (vezi tabelul periodic al elementelor de la pagina 184).

Modul simbolic de scriere se extinde și la nucleoni. Astfel, vom nota protonul cu $_{1}^{1}p$ și neutronul cu $_{0}^{1}n$.

Elementele care au același Z și A diferit se numesc izotopi: ${}_{1}^{1}H$ (hidrogen), ${}_{1}^{2}H$ (deuteriu), ${}_{1}^{3}H$ (tritiu).

Elementele care au același A și Z diferit se numesc *izobari*: $^{76}_{32}$ Ge și $^{76}_{34}$ Se; $^{54}_{24}$ Cr și $^{54}_{26}$ Fe.

S-a constatat că atomii care nu se disting din punct de vedere chimic (adică aparțin aceluiași element, având aceeași structură electronică), formează un amestec de atomi diferiți. În acest amestec, toți atomii au același număr de protoni, dar numărul de neutroni diferă de la nucleu la nucleu.

De exemplu, în natură, oxigenul se compune din atomi de oxigen cu numărul de masă 16 (${}^{16}_{8}$ O) în proporție de 99,759%, cu numărul de masă 17 (${}^{17}_{8}$ O) în proporție de 0,0374% și cu numărul de masă 18 (${}^{18}_{8}$ O) în proporție de 0,2036%.

Dimensiunile nucleului

Suprafața nucleului și dimensiunile sale sunt perfect determinate. Considerând nucleul sferic (fig. 5.1), raza nucleului se calculează din relația empirică:

$$R = R_0 A^{1/3}. (5.1)$$

Pentru un număr mare de nuclee, constanta $R_0 = 1,45\cdot 10^{-15}$ m și reprezintă raza unui nucleu de 1_1 H.

Deci, volumul nucleului este:

$$V = \frac{4}{3}\pi R^3. {(5.2)}$$

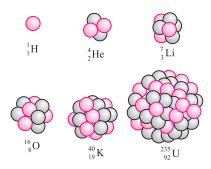


Fig. 5.1. Structura câtorva nuclee atomice (protonii – roșii, neutronii – cenușii).

Se observă că volumul este direct proporțional cu numărul de nucleoni

Sarcina nucleului

În atom trebuie să se găsească Z protoni care să compenseze sarcina a Z electroni. Deci, sarcina nucleului este pozitivă și egală cu + Ze.

Masa nucleului, m_N

Această masă este dată de diferența dintre masa atomului și masa electronilor din atom.

Ca unitate de măsură s-a ales unitatea atomică de masă:

$$1 \text{ u} = 1,6605 \cdot 10^{-27} \text{ kg},$$

adică masa egală cu a 12-a parte din masa izotopului 12/6C.

Astfel, masele de repaus ale protonului și neutronului sunt:

$$m_p = 1,67262 \cdot 10^{-27} \text{ kg} = 1,007299 \text{ u};$$

 $m_n = 1,67493 \cdot 10^{-27} \text{ kg} = 1,008690 \text{ u}.$

Pe baza relației dintre masă și energie, dată de Einstein, $\Delta E = c^2 \Delta m$, masa se poate exprima și în unități echivalente de energie.

Stiind că $c = 2,9979246 \cdot 10^8$ m/s și 1 eV = 1,602177 · 10⁻¹⁹ J,

$$1 \text{ u} \cdot c^2 = 14,92383 \text{ J} = 931,5 \text{ MeV}.$$

Obţinem, deci: $m_p = 938,3 \text{ MeV}/c^2$ şi $m_n = 939,5 \text{ MeV}/c^2$.

Se vede că: $m_p = m_n \approx 1$ u iar $m_p = 1836 m_e$.

Valoarea densității nucleare este foarte mare.

$$\rho = \frac{m_p A}{V} = \frac{m_p A}{\frac{4}{3} \pi R_0^3 A} = \frac{m_p}{\frac{4}{3} \pi R_0^3} = 10^{17} \text{ kg/m}^3.$$

Experimental se constată că, la suprafața nucleului, densitatea scade treptat și nu se anulează brusc.

5.2. Energia de legătură a nucleului. Stabilitatea nucleului

5.2.1. Forțe nucleare. Energia de legătură a nucleului

Tot din experimentul lui Rutherford s-a tras concluzia că la distanțe mai mici de 10^{-14} m acționează forțe mult mai intense decât cele coulombiene.

Se poate analiza experimental cum se manifestă interacțiunea dintre un proton și un neutron în funcție de distanța dintre cele două particule.

Ştim că:
$$dL = -dE_p$$
; $Fdr = -dE_p \Rightarrow F = -\frac{dE_p}{dr}$

Așa cum se vede în figura 5.2, a, pentru distanțe r > R nu acționează nicio forță. Pentru r < R, cele două particule se atrag puternic și ca urmare energia potențială scade brusc. În regiunea $r \le R$ există o "groapă de potențial".

În cazul interacțiunii dintre doi protoni (fig. 5.2, b), la distanțe mai mari de R, protonii se resping datorită forței electrostatice coulombiene.

La distanța $r \le R$, potențialul scade brusc, datorită faptului că forțele atractive sunt mult mai intense.

Curba energiei potențiale are un maxim numit "barieră de potențial". Pentru o particulă având sarcina Z_1e , "înălțimea" barierei de potențial este dată de relația:

$$E_p = \frac{Z_1 Z e^2}{4\pi \varepsilon_0 R} \,, \tag{5.3}$$

în care +Ze este sarcina nucleului.

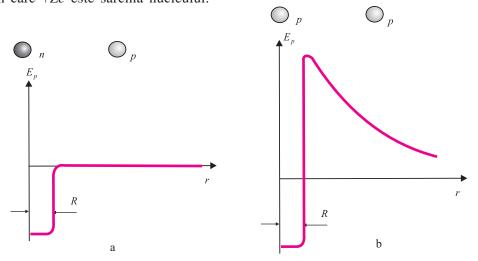


Fig. 5.2. a – variația forței nucleare neutron-proton cu distanța r dintre cele două particule; b – variația forței nucleare proton-proton cu distanța r dintre cei doi protoni.

Fortele care mentin protonii și neutronii în nucleu sunt forte nucleare. Aceste forte au următoarele proprietăți:

- sunt mult mai intense decât fortele electrostatice coulombiene (de 100 ori mai mari);
 - au rază mică de acțiune ($\approx 10^{-15}$ m);
 - nu depind de sarcina particulelor;
- au aceeași valoare pentru doi protoni, doi neutroni sau pentru un proton și un neutron;
 - un nucleon interacționează numai cu nucleonii aflați în imediata apropiere.

Prin metodele spectrometriei de masă, pot fi măsurate cu precizie mare masele atomilor. Fortele nucleare sunt atât de mari, încât masa unui sistem nuclear legat este mai mică decât suma maselor nucleonilor componenți.

În acest fel, se poate obtine energia de legătură a unei configurații nucleare direct din compararea maselor. S-a observat că masa unui izotop este mai mică decât suma maselor particulelor constituente în stare liberă (nucleoni și electroni).

Pentru un nucleu format din Z protoni și (A - Z) neutroni, diferența dintre suma maselor nucleonilor liberi aflați în repaus și masa nucleului legat aflat în repaus (m_N) este egală cu: $Zm_p + (A-Z)m_n - m_N = \Delta m$. Conform formulei lui Einstein, care stabilește relația între masă și energie:

$$E = c^2 \Delta m, \tag{5.4}$$

energia care se eliberează la formarea nucleului din nucleoni sau energia necesară desfacerii nucleului în nucleonii componenți se numește energia de legătură a nucleului (E_{loo}) .

Pe baza relației 5.4, energia de legătură a nucleului are expresia:

$$E_{\text{leg}} = c^2 [Zm_p + (A - Z)m_n - m_N].$$
 (5.5)

Întrucât în tabele sunt date masele atomilor (m_{λ}) și nu masele nucleelor, vom exprima relația 5.5 astfel încât să apară masa atomului.

$$E_{\rm leg} = c^2 [Zm_p + (A-Z)m_n + Zm_e - Zm_e - m_N].$$
 unde m_e este masa electronului.

Masa atomului diferă de masa nucleului:

$$m_A = m_N + Zm_e - \frac{E_{\text{leg}}^{\text{el}}}{c^2}.$$

Energia de legătură a electronilor în atom $E_{\text{leg}}^{\text{el}}$ (10 eV) poate fi neglijată, ea fiind mult mai mică decât energia de legătură a nucleului, deci:

$$E_{leg} = c^{2}[Zm_{H} + (A - Z)m_{n} - m_{A}],$$
 (5.6)

unde:

$$m_{\rm H} = m_p + m_e$$

este masa atomului de hidrogen ¹H.

Definim energia de legătură pe nucleon ca fiind energia de legătură a nucleului împărțită la numărul nucleonilor din nucleu: $\frac{E_{\text{leg}}}{4}$.

Să calculăm, de exemplu, energia de legătură a nucleului de heliu ${}_{2}^{4}$ He. Numărul de protoni este Z=2 și numărul de neutroni A-Z=2.

Masa atomului de ${}_{2}^{4}$ He este: $m_{{}_{4}^{2}\text{He}} = 4,00260 \text{ u} = 3728 \text{ MeV},$

iar masa atomului de hidrogen ¹H:

$$m_{\rm lH} = 1,00815 \text{u} = 938,7 \text{ MeV}.$$

$$E_{\rm leg} = 2.938,7 + 2.939,5 - 3728 = 28,4 \text{ MeV}.$$

Putem calcula în continuare energia de legătură pe nucleu:

$$\frac{E_{\text{leg}}}{A} = \frac{28.4}{4} = 7.1 \text{ MeV}.$$

5.2.2. Stabilitatea nucleului

Stabilitatea nucleelor este caracterizată de:

- raportul dintre numărul de neutroni N și numărul de protoni Z: $\frac{N}{Z}$;
- energia de legătură pe nucleon:

$$\frac{E_{\text{leg}}}{A}$$
.

Urmărind experimental proprietățile nucleelor elementelor, s-a constatat că anumite proprietăți suferă modificări în salturi la un număr de protoni sau de neutroni egal cu: 2, 8, 20, 28, 50, 82, 126, așa-numitele "numere magice". Elementele ale căror nuclee conțin un număr magic și de protoni și de neutroni, se numesc "dublu magice" (⁴₂He, ¹⁶₈O, ⁴⁰₂₀Ca, ⁴⁸₂₀Ca și ²⁰⁸₈₂Pb).

O valoare mare a energiei de legătură pe nucleon indică faptul că nucleonii sunt puternic legați între ei, ceea ce înseamnă că nucleul este stabil.

În graficul din figura 5.3 este reprezentată dependența energiei de legătură pe

nucleon
$$\frac{E_{\text{leg}}}{A}$$
 în funcție de numărul de masă A .

Din grafic se observă că energia de legătură pe nucleon crește rapid cu numărul de masă pentru valori mici ale lui A, prezentând și maxime pronunțate pentru ${}^{4}_{2}$ He, ${}^{12}_{6}$ Ca, ${}^{16}_{8}$ O. Pentru A cuprins între 40 și 140, energia de legătură pe nucleon este maximă (\approx 8,5 MeV) și aproape constantă. Pentru A > 140 (nuclee grele) energia de legătură pe nucleon scade lent ajungând la aproximativ 7,5 MeV.

Maximele mărimii $E_{\rm leg}/A$ pentru nucleele ușoare cu A < 28 și Z = N sugerează formarea unor grupări stabile de 4 nucleoni. Există, deci, tendința ca două perechi proton-neutron să se lege astfel încât să formeze un nucleu de ${}_2^4{\rm He}$ – o particulă α , care este foarte stabilă.

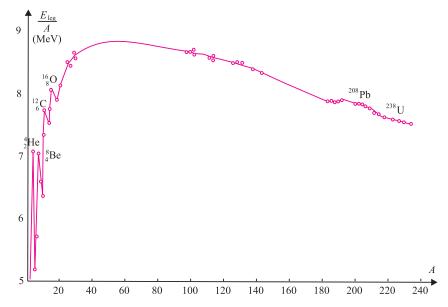


Fig. 5.3. Variația energiei de legătură pe nucleon în funcție de numărul de masă A.

5.2.3. Modelarea structurii nucleului

În elaborarea modelelor nucleare principala piedică constă în faptul că nu se cunoaște natura fortelor nucleare.

Pe baza modelelor nucleare se încearcă explicarea stabilității nucleelor, a proprietăților lor radioactive, precum și probabilitățile de tranziție.

Modelul picăturii

Acest model propus de Bohr în anul 1931 se bazează pe analogia dintre interacțiunea care are loc între nucleoni și cea dintre moleculele dintr-o picătură de lichid:

- nucleonul interacționează numai cu nucleonii vecini;
- mişcarea nucleonilor este comparată cu mişcarea de agitație termică a moleculelor lichidului, nucleonii din "picătura nucleară" se mişcă continuu, schimbând energie între ei în urma ciocnirilor;
 - picătura de substanță nucleară este încărcată electric și este incompresibilă;
- nucleonii de la suprafață sunt atrași spre interiorul picăturii exercitând o forță de "tensiune superficială" care determină forma sferică a picăturii.

Cu ajutorul acestui model se pot explica:

– evaluarea razei nucleului pe baza faptului că volumul nucleului este aproximat cu volumul unei sfere de rază R, proporțional cu numărul de nucleoni A:

$$V = \frac{4}{3}\pi R^3 = kA;$$

 procesul de fisiune nucleară, asemuit cu vibrația unei molecule în jurul unei poziții momentane de echilibru; emisia de nucleoni în cazul reacțiilor nucleare poate fi descrisă ca un proces de "evaporare".

Modelul nu explică:

- forțele nucleare;
- o parte dintre proprietățile nucleului;
- stabilitatea nucleelor formate din grupări de 2 neutroni și 2 protoni;
- stările excitate ale nucleelor;
- reacțiile nucleare care au loc cu particule proiectil de mare energie;
 Modelul păturilor nucleare

Acest model a fost propus de Heisenberg în anul 1935.

Asemănător distribuției electronilor dintr-un atom pe anumite pături energetice se distribuie și nucleonii pe anumite nivele de energie. Fiecare nucleon se mișcă independent în câmpul creat de ceilalți nucleoni.

Ca și orbitele electronice, orbitele nucleare sunt caracterizate de cele patru numere cuantice pentru care este valabil principiul de excluziune a lui Pauli; pe o pătură de energie nu pot sta decât cel mult doi nucleoni identici cu momentele de spin orientate antiparalel.

Nucleul este cel mai stabil când păturile sunt ocupate.

Dacă se introduce încă un nucleon, acesta ocupă un alt nivel de energie, fiind mai slab legat (o energie de legătură mai mică). Înseamnă că energia de legătură pe nucleon a unui nucleu cu pături incomplete este mai mică decât a unui nucleu cu pături complete.

Modelul explică existența "numerelor magice", descrie comportarea nucleelor ușoare, clarifică *izomeria* (același A, același Z și diferă prin însușirile lor radioactive), emisia radiației γ prin tranzițiile între anumite nivele energetice nucleare, stabilitatea nucleelor formate din grupuri de 2 neutroni și 2 protoni.

Modelul unificat dintre modelul picăturii și modelul în pături este cunoscut ca *modelul generalizat*.

Probleme propuse

1. Pe baza relației 5.6, să se calculeze energia de legătură a nucleului de deuteriu ${}_{1}^{2}$ H. Se cunosc: $m_{\rm H}=1,007299$ u; $m_{\rm n}=1,008690$ u și $m_{\rm 2H}=2,014102$ u.

R: 1,76 MeV.

2. Să se calculeze energia de legătură pe nucleon, pentru nucleul de $^{235}_{92}$ U. Se dau: m_{235}_{92} U = 235,04393u; $m_{\rm H}$ = 1,007299 u și m_n = 1,008690 u.

R: 7,4 MeV.

3. Să se calculeze energia de legătură a unui nucleu care are un număr egal de protoni și de neutroni cu al nucleului de ²⁷Al și raza de 1,5 ori mai mică. Energia de legătură a nucleului de aluminiu este egală cu 216 MeV.

R: 64 MeV.

4. Calculați masa nucleului izotopului $^{16}_{8}$ O, cunoscând că: masa atomului $m_{^{16}_{80}} = 15,9949$ u și masa electronului $m_{_{e}} = 5,6067\cdot10^{-4}$ u.

R: 15,9904 u.

5.3. Radioactivitatea¹. Legile dezintegrării radioactive

Nucleele multor elemente chimice sunt stabile, adică își mențin structura un timp infinit de lung (miliarde de ani).

Nucleele instabile au o existență limitată în timp.

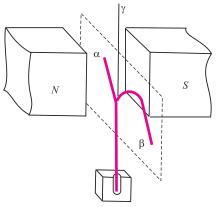
Nucleele instabile se numesc *radioactive*, deoarece dezintegrarea nucleului stabil se face cu emiterea din nucleu a unor *radiații* corpusculare și electromagnetice.

Instabilitatea nucleară se deosebește de instabilitatea atomului prin:

- durata medie a instabilității; la un sistem atomic durata unei stări excitate este cam de 10^{-8} s, pe când la un nucleu instabil este cuprinsă între 10^{-14} s și 10^{11} ani.
- dezexcitarea sistemelor atomice se face prin emisie de fotoni; nucleele atomice se dezexcită atât prin emisie de fotoni cât și de particule β sau α .

Transformările nucleare pot fi:

- spontane: dezintegrare radioactivă (α, β);
 - dezexcitare nucleară (γ);
- induse: reacții nucleare;
 - excitări nucleare.


În toate transformările nucleare se respectă *legile de conservare* a energiei, impulsului, momentului cinetic, sarcinii și numărului de nucleoni.

5.3.1. Radioactivitatea naturală

Procesul de emisie spontană a radiațiilor îl numim *radioactivitate naturală*.

Modelul protono-neutronic al nucleului explică și radioactivitatea nucleelor.

Pentru a stabili natura radiațiilor emise de nucleul unui element radioactiv, preparatul radioactiv se introduce într-o mică cavitate cilindrică practicată într-un bloc de plumb. Perpendicular pe direcția fasciculului de radiații, se aplică un câmp magnetic uniform. Se decelează trei tipuri de radiații (fig. 5.4). Ele au fost numite radiații α , β și γ .

Fig. 5.4. Separarea radiațiilor radioactive în câmp magnetic.

După modul în care sunt deviate, s-a stabilit că:

- Radiațiile α sunt formate din particule cu sarcină pozitivă și masă mare (sunt mai puțin deviate). Particulele α sunt nuclee de heliu și au energii cuprinse între 3 și 6 MeV. În aer, au un parcurs² de 3 până la 10 cm și pot fi oprite de un strat de substanță de o fracțiune de milimetru. Ionizează puternic gazele prin care trec.

¹ Vezi şi http://www.andrad.ro/ro/?id=10039&lang=ro.

² Parcurs – drumul mediu străbătut de particule într-o substanță până la oprire.

– Radiațiile β⁻ sunt fascicule de electroni, cu sarcina egală cu sarcina electrică elementară, $1,6\cdot10^{-19}$ C. La aceeași energie, au putere de ionizare aproximativ de 100 de ori mai mică decât particulele α și un parcurs de câțiva metri în aer și 2–3 mm în aluminiu.

Există şi radiații β^+ , fascicule de particule numite *pozitroni*, având proprietăți asemănătoare cu radiațiile β^- , dar ele se anihilează rapid. Într-un proces de anihilare pozitron-electron iau naștere două cuante γ .

- Radiațiile γ nu sunt deviate de câmpul magnetic și electric. Ele sunt unde electromagnetice cu lungimi de undă foarte mici, de ordinul 1/100 din lungimea de undă pentru razele X. Sunt mult mai penetrante decât radiațiile α și β , parcursul lor, la aceeași energie, fiind de câteva zeci de metri.

Sunt radiații de natură electromagnetică având energii mai mari decât radiațiile X. Ca urmare, înnegresc placa fotografică, ionizează gazele și substanțele prin care trec, dar mult mai slab decât radiațiile X.

Un același nucleu nu emite concomitent toate cele trei tipuri de radiații; doar un amestec de elemente radioactive le poate da.

În urma emisiei radioactive, nucleul emitent se transformă într-un alt nucleu. **Dezintegrarea** α . În urma emisiei unei particule α , nucleul elementului radioactiv ${}_{\alpha}^{A}X$ se transformă după ecuația:

$${}_{Z}^{A}X \rightarrow {}_{2}^{4}\alpha + {}_{Z-2}^{A-4}Y,$$
 (5.7)

adică, numărul de masă al atomului se micșorează cu 4 unități și numărul atomic Z cu 2 unități. Specia atomică X se transformă în Y, deplasat cu două căsuțe la stânga în tabelul periodic al elementelor.

Particulele α emise de nucleu, se formează în interiorul nucleului prin unirea a 2 protoni cu 2 neutroni.

Din punctul de vedere al fizicii clasice, pentru ca particula α să poată părăsi nucleul, ar trebui să primească o energie pentru a ieși din "groapa de potențial" și a trece peste "bariera de potențial". Dar nucleele se dezintegrează spontan, fără transfer de energie din afară.

În mecanica cuantică, dezintegrarea α este tratată ca o trecere a acestor particule *prin* bariera de potențial, proces numit *efect tunel*.

Dezintegrarea β . Prin emisia unui electron, noul element are același număr de masă A, iar numărul atomic Z este mărit cu o unitate:

$${}_{7}^{A}X \rightarrow {}_{-1}^{0}\beta + {}_{7+1}^{A}Y.$$
 (5.8)

Locul elementului se deplasează cu o căsuță la dreapta în tabelul periodic al elementelor.

În cazul emisiei unui pozitron:

$${}_{7}^{A}X \rightarrow {}_{+1}^{0}\beta + {}_{7,-1}^{A}Y.$$
 (5.9)

Elementul radioactiv se transformă într-un element nou, situat cu un loc mai la stânga în tabelul periodic al elementelor.

Deoarece în nucleu nu există electroni sau pozitroni, se admite că emisia β^- are loc ca urmare a transformării unui neutron într-un proton și un electron, iar emisia β^+ , prin transformarea unui proton într-un neutron și un pozitron. Pentru a se respecta legea conservării energiei, se emite ipoteza că în dezintegrarea β^- și β^+ , pe lângă neutron și proton, apare o particulă nouă, neutră electric, cu masă foarte mică, care se deplasează cu viteza luminii, denumită *neutrino* (ν) și *antineutrino* (ν).

Deci:
$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{+1}^{0}e + v \, \, \text{si} \, {}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e + \widetilde{v}.$$

Dezintegrarea γ . Radiația γ este emisă atunci când un nucleu trece dintr-o stare cu energie mai mare într-o stare cu energie mai mică. Nucleul emitent își păstrează masa și sarcina.

Radiația γ însoțește emisia de particule α sau β , în cazul în care nucleul elementului rezultat nu este stabil ci este la rândul lui radioactiv, deci este în stare excitată și se notează cu Y^* .

5.3.2. Legile dezintegrării radioactive

Dezintegrarea este un proces spontan care se produce întâmplător, deci stabilirea unei legi de dezintegrare trebuie abordată din punct de vedere statistic. Nu se poate prevedea care anume atom se va dezintegra la un moment dat, dar se poate cunoaște numărul de atomi care se vor dezintegra într-un anumit interval de timp.

S-a constatat experimental că, pentru un nucleu instabil, în unitatea de timp, se dezintegrează totdeauna aceeași fracțiune din numărul de nuclee prezente la un moment dat.

Constanta care reprezintă fracțiunea din numărul nucleelor prezente ce se dezintegrează în unitatea de timp se numește constantă radioactivă (sau constantă de dezintegrare) λ :

$$\lambda = -\frac{dN}{N} \frac{1}{dt}; [\lambda]_{SI} = s^{-1}.$$
 (5.10)

Ea este independentă de presiune, temperatură ș.a., este aceeași pentru toate nucleele aceleiași specii, adică este o constantă de material.

Semnul minus arată că numărul de nuclee care se dezintegrează d*N* crește și numărul de nuclee rămase nedezintegrate, *N*, scade.

Separăm variabilele și integrăm relația 5.10, de la N_0 (numărul de nuclee nedezintegrate prezente la momentul t=0) până la N (numărul de nuclee

nedezintegrate la momentul
$$t$$
):
$$\int_{N_0}^{N} \frac{dN}{N} = -\lambda \int_{0}^{t} dt.$$

Se obţine:
$$\ln N - \ln N_0 = -\lambda t \implies \ln \frac{N}{N_0} = -\lambda t$$
.

Legea dezintegrării radioactive se poate scrie:

$$N = N_0 e^{-\lambda t}. (5.11)$$

Deci, numărul nucleelor nedezintegrate N scade exponențial în timp (fig. 5.5). Pentru caracterizarea radioactivității unui element se folosește o altă constantă, timpul de înjumătățire $T_{1/2}$. Este timpul după care jumătate dintre nucleele inițiale

se dezintegrează, adică $N = \frac{N_0}{2}$ (fig. 5.5).

Înlocuind în relația 5.11, se obține: $\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}} \Rightarrow 1 = 2e^{-\lambda T_{1/2}}$

Logaritmând și știind că $\ln 2 = 0.693$, expresia timpului de înjumătățire este dată de formula:

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda} \,. \tag{5.12}$$

Relația 5.11 poate fi exprimată și în funcție de timpul de înjumătățire $T_{1/2}$. De altfel, în probleme, această mărime este mai des folosită decât constanta radioactivă λ.

Întrucât din relația 5.12:

$$\lambda = \frac{0,693}{T_{1/2}},$$

rezultă că:

$$N = N_0 e^{-0.693 \frac{t}{T_{1/2}}}.$$

În tabelul 5.1 sunt dați timpii de înjumătățire pentru unele elemente radioactive. Numărul nucleelor dezintegrate este:

$$N_0 - N = N_0 - N_0 e^{-\lambda t} = N_0 (1 - e^{-\lambda t}).$$
 (5.13)

Se utilizează aproximația: $e^{-x} \approx 1 - x$ pentru $x \ll 1$.

În acest caz, ecuația 5.13 devine:

N

Fig. 5.5. Scăderea în timp a numărului de nuclee instabile N. După $t = T_{1/2}$, numărul de nuclee instabile N_0 , prezente la t = 0, se $N_0 - N \approx N_0 \lambda t$. (5.14)Tabelul 5.1 elemente radioactive

Elementul radioactiv	T _{1/2}
$^{238}_{92}{ m U}$	4,55·10 ⁹ ani
²³² ₉₀ Th	1,39·10 ¹⁰ ani
²²⁶ ₈₈ Ra	1620 ani
²²² ₈₆ Rn	3.825 zile
²¹² ₈₄ Po	10 ⁻⁸ s

Timpul de înjumătățire pentru unele

reduce la $N_0/2$.

 $T_{1/2}$

Stabilitatea elementelor radioactive se defineste prin viata medie τ , egală cu inversul lui λ:

$$\tau = \frac{1}{\lambda}$$
.

Înlocuind în 5.11, se obține:

$$N = N_0 e^{-\frac{1}{\lambda}\lambda} \Rightarrow N = \frac{N_0}{e} = 0.37 N_0.$$
 (5.15)

adică, viața medie τ este egală cu timpul după care numărul de nuclee N_0 se micsorează de e ori (e fiind baza logaritmilor naturali: e = 2,7).

O sursă radioactivă se caracterizează printr-o mărime numită activitate, notată cu A.

 Λ reprezintă numărul de particule pe care le emite sursa în unitatea de timp:

$$\Lambda = \frac{\mathrm{d}N}{\mathrm{d}t} \,. \tag{5.16}$$

Unitatea de măsură în S.I. pentru activitate este becquerel (Bq):

$$1 \text{ Bq} = 1 \text{ dez/s}.$$

În mod curent, se folosește unitatea denumită curie (Ci):

1 Ci =
$$3.7 \cdot 10^{10}$$
 dez/s = $3.7 \cdot 10^{10}$ Bq.

Relația dintre activitate și constanta radioactivă este:

$$\Lambda = \lambda N, \tag{5.17}$$

iar:

$$\Lambda = \Lambda_0 e^{-\lambda t}. \tag{5.18}$$

Dacă înmulțim relația 5.11 cu masa unui atom, m:

$$mN = mN_0 e^{-\lambda t}$$
,

rezultă:

$$M = M_0 e^{-\lambda t}. (5.19)$$

Dacă împărțim relația 5.11 la volumul ocupat de substanța radioactivă, obținem:

$$\frac{N}{V} = \frac{N_0}{V} e^{-\lambda t} \Rightarrow n = n_0 e^{-\lambda t}, \tag{5.20}$$

unde *n* este concentrația substanței radioactive.

În stabilirea legii de dezintegrare am considerat că elementul rezultat este stabil. De cele mai multe ori, însă, produșii de dezintegrare sunt și ei radioactivi. Aceştia la rândul lor se pot dezintegra până când se ajunge la un element stabil.

Ansamblul elementelor radioactive care derivă prin dezintegrare unul din altul, până la elementul stabil, formează o serie radioactivă.

În natură se cunosc trei serii radioactive:

- seria uraniului $^{238}_{92}$ U \rightarrow $^{206}_{82}$ Pb; seria thoriului $^{232}_{90}$ Th \rightarrow $^{208}_{82}$ Pb; seria actiniului $^{235}_{92}$ U \rightarrow $^{207}_{82}$ Pb.

Probleme rezolvate

1. Să se determine "vârsta" unui obiect de lemn, știind că activitatea izotopului 14 C pentru acest obiect este 3/5 din activitatea unui copac tăiat recent. Timpul de înjumătățire al izotopului este $T_{1/2} = 5730$ ani.

Activitatea copacului tăiat recent este Λ_0 . Conform enunțului, $\Lambda = 3/5\Lambda_0$. Înlocuind în relația 5.18, obținem: $\Lambda_0 = \Lambda_0 e^{-\lambda t} \Rightarrow 3 = 5e^{-\lambda t}$

Logaritmând, rezultă: $\ln 3 = \ln 5 - \lambda t \Rightarrow \lambda t = \ln \frac{5}{3}$, de unde $t = \frac{\ln \frac{5}{3}}{\lambda}$.

Însă:
$$\lambda = \frac{0.693}{T_{1/2}}$$
, deci: $t = \frac{\ln\frac{5}{3}}{0.693}T_{1/2} = \frac{\ln\frac{5}{3}}{0.693}5730 = 4223$ ani.

2. Produsul stabil final al dezintegrării izotopului de uraniu $^{238}_{92}$ U, având timpul de înjumătățire $T_{1/2}=4,5\cdot 10^9$ ani, este izotopul plumbului $^{206}_{82}$ Pb. Să se calculeze cât este masa plumbului produs prin dezintegrare în timpul $t=2,25\cdot 10^9$ ani a unei cantități m=1 kg de uraniu pur.

Numărul de nuclee dezintegrate de uraniu este egal cu numărul de nuclee de plumb

la momentul
$$t: N_{\text{dez}} = N_{\text{pb}} = N_{\text{0U}} (1 - e^{-\lambda t}); N_{\text{pb}} = \frac{m_{\text{pb}} N_A}{A_{\text{pb}}} \text{ si } N_{\text{0U}} = \frac{m_{\text{U}} N_A}{A_{\text{U}}}, \text{ deci:}$$

$$\frac{m_{\rm Pb}}{A_{\rm Pb}} = \frac{m_{\rm U}}{A_{\rm U}} (1 - e^{-\lambda t}) \implies m_{\rm Pb} = m_{\rm U} \frac{A_{\rm Pb}}{A_{\rm U}} (1 - e^{-\lambda t}).$$

Din enunt:
$$t = \frac{T_{1/2}}{2}$$
, deci: $m_{\text{Pb}} = m_{\text{U}} \frac{A_{\text{Pb}}}{A_{\text{U}}} (1 - e^{\frac{\ln 2}{T_{1/2}} \frac{T_{1/2}}{2}}) = m_{\text{U}} \frac{A_{\text{Pb}}}{A_{\text{U}}} (1 - e^{-\frac{\ln 2}{2}})$.

Înlocuind numeric se obține:
$$m_{\rm Pb} = 1 \cdot \frac{206}{238} \left(1 - \frac{1}{e^{0.35}} \right) = \frac{206}{238} (1 - 0.707)$$
.

Efectuând calculele rezultă că: $m_{\rm Pb} \approx 0.253~{\rm kg}$.

5.3.3. Reacții nucleare

Reacțiile nucleare sunt *procesele de interacțiune* dintre nuclee și diferite particule (protoni, neutroni, particule α , ioni grei, electroni, radiații γ), care au ca efect fie transformarea nucleelor inițiale, fie modificarea stării lor energetice.

Nucleele care rezultă în urma unei reacții nucleare pot fi stabile sau instabile. Dacă nucleele care rezultă sunt instabile, ele se dezintegrează după aceleași legi ca în cazul radioactivității naturale.

Ecuația unei reacții nucleare poate fi scrisă sub forma:

$$X + x \rightarrow Y + y \text{ sau } X(x, y)Y, \tag{5.21}$$

în care X reprezintă nucleul-țintă, x particula proiectil, Y nucleul rezultat și y particula emergentă. Paranteza (x, y) indică tipul reacției nucleare.

Reacțiile nucleare descrise de ecuația 5.21 reprezintă diferite procese.

1) Dacă X = Y și x = y are loc o împrăștiere.

Împrăştierea este procesul în urma căruia particula y care pleacă din țintă este identică cu particula incidentă și nucleul X nu-și schimbă starea internă (specia). Împrăștierea poate fi elastică și neelastică.

- Un exemplu de $\hat{i}mpr\check{a}stiere$ elastic \check{a} este experimentul lui Rutherford de împr $\check{a}stiere$ a particulelor α pe o foiț \check{a} de aur. Nucleul X nu- \hat{s} i schimb \check{a} starea intern \check{a} .
- În împrăştierea neelastică se schimbă starea internă a nucleelor care se ciocnesc. Dacă particulele incidente nu sunt complexe, se schimbă doar starea internă a nucleului țintă care trece din starea fundamentală într-o stare excitată.
- 2) Dacă $X \neq Y$ şi $x \neq y$, are loc o *transmutație nucleară*. Nucleul Y care ia naștere poate fi stabil sau instabil.

Prima transmutație nucleară a fost realizată de Rutherford.

El a bombardat o țintă de azot cu particule α emise de o sursă naturală de poloniu. În urma reacției iau naștere nuclee de oxigen și sunt emiși protoni. Reacția este descrisă de relația:

$${}^{14}_{7}\text{N} + {}^{4}_{2}\alpha \rightarrow {}^{17}_{8}\text{O} + {}^{1}_{1}p.$$
 (5.22)

O altă reacție cunoscută, care a pus în evidență neutronul (prin experimentul realizat de J. Chadwick), are loc la bombardarea unei ținte de beriliu cu particule α produse de o sursă radioactivă. Ea se scrie:

$${}_{4}^{9}\text{Be} + {}_{2}^{4}\alpha \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}n.$$
 (5.23)

Reacțiile nucleare pot fi declanșate și de particule accelerate. Prima reacție realizată în acest mod s-a obținut cu protoni incidenți pe o țintă de nuclee de litiu. Reacția se scrie:

$${}_{3}^{7}\text{Li} + {}_{1}^{1}p \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{4}\text{He}.$$

Se obțin, deci, două particule α.

După tipul particulelor incidente, reacțiile nucleare pot fi clasificate în:

1) Reacții produse de particule încărcate:

$$(\alpha, p)$$
; (d, p) ; (p, n) ; (α, n) ; (d, n) ; (p, α) .

În acest caz, energia particulelor trebuie să fie mai mare pentru a învinge forțele de respingere coulombiene.

Dăm câteva exemple: pentru $^{16}_{8}$ O, bariera de potențial a nucleului în cazul bombardării cu protoni este de aproximativ 3MeV, iar în câmpul nucleului de $^{238}_{92}$ U are valoarea de 14,3 MeV.

Pentru aceleași nuclee, în cazul bombardării cu particule α , înălțimea barierei este dublă, având valorile de \approx 6MeV, respectiv \approx 28,6 MeV.

Reacțiile, însă, se pot produce și la energii mai mici, ca urmare a pătrunderii particulelor în nucleu prin efect tunel.

2) Reacțiile cu neutroni: (n, p); (n, α) ; (n, γ) , au loc și la energii foarte mici, deoarece neutronul neavând sarcină, poate pătrunde cu ușurință în nucleu.

Aceste reacții produc, însă, și particule emergente care au sarcină și care trebuie să învingă bariera de potențial pentru a ieși din nucleu.

3) Dacă $x = \gamma$ prin (γ, p) și (γ, n) se produce o reacție fotonucleară.

Pentru ca reacția să aibă loc, trebuie ca radiația γ să aibă o energie mai mare ca energia de legătură a nucleonului (p sau n) în nucleu.

Ca reacție de acest tip, este foarte cunoscută fotodezintegrarea deuteriului:

$${}_{1}^{2}D(\gamma, n){}_{1}^{1}H.$$

5.3.4. Legi de conservare în reacțiile nucleare

1) Legea conservării sarcinii electrice

Suma sarcinilor electrice ale particulelor intrate în reacție este egală cu suma sarcinilor electrice ale particulelor rezultate din reacție:

$$Z_{X} + Z_{x} = Z_{Y} + Z_{y}. {(5.24)}$$

2) Legea conservării numărului de nucleoni

Numărul total al nucleonilor (egal cu numărul de masă A) care intră în reacție este egal cu numărul de nucleoni rezultați din reacție:

$$A_{X} + A_{Y} = A_{Y} + A_{Y}. {(5.25)}$$

De exemplu, pentru reacția ${}_{3}^{7}$ Li $({}_{1}^{1}p, {}_{2}^{4}\alpha){}_{2}^{4}$ He, cele două legi se scriu:

$$Z_X + Z_x = 3 + 1 = 4$$
; $A_X + A_x = 7 + 1 = 8$; $Z_Y + Z_y = 2 + 2 = 4$; $A_Y + A_y = 4 + 4 = 8$.

3) Legea conservării energiei

În orice reacție nucleară *energia totală relativistă* se conservă. Știm că această energie este egală cu:

$$E = m_0 c^2 + E_c.$$

În studiul energiei de legătură a nucleului am considerat nucleul în repaus și nucleonii izolați în repaus. În reacțiile nucleare, particulele au și energii cinetice.

În consecință, legea conservării energiei totale relativiste se scrie:

$$E_{\rm X} + E_{\rm x} = E_{\rm Y} + E_{\rm y},$$
 (5.26)

adică:

şi

$$m_{\rm X}c^2 + E_{c\rm X} + m_{\rm X}c^2 + E_{c\rm X} = m_{\rm Y}c^2 + E_{c\rm Y} + m_{\rm Y}c^2 + E_{c\rm Y},$$
 (5.27)

unde $m_{\rm X}$, $m_{\rm x}$, $m_{\rm y}$ și $m_{\rm y}$ sunt masele de repaus ale particulelor.

Ecuația 5.27 mai poate fi scrisă sub forma:

$$E_{cY} + E_{cy} - E_{cX} - E_{cx} = (m_X + m_x - m_Y - m_y)c^2.$$
 (5.28)

Relația 5.28 arată că variația energiei cinetice este echivalentă cu variația energiei de repaus.

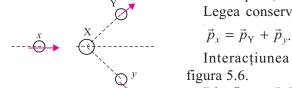
Numim energie de reactie diferența dintre suma energiilor cinetice ale particulelor rezultate din reactie și suma energiilor particulelor intrate în reactie sau diferența dintre energia de repaus a particulelor înainte de reacție și ca de după reacție. Energia de reacție se notează cu Q și este egală cu:

$$Q = (E_{cx} + E_{cy}) - (E_{cx} + E_{cy}), (5.29)$$

sau:

$$Q = [(m_{v} + m_{v}) - (m_{v} + m_{v})]c^{2}.$$
 (5.29')

Pentru Q > 0 reacția se numește exoenergetică, iar pentru Q < 0 reacția se numește endoenergetică.


În reacțiile exoenergetice se eliberează energie, întrucât energia cinetică a particulelor rezultate din reacție este mai mare decât energia cinetică a particulelor intrate în reacție.

Si în cazul reacțiilor nucleare, se folosesc masele atomilor și nu a nucleelor, deoarece eroarea care se face neglijând masele electronilor și a energiei de legătură a electronilor în atom este mică.

4) Legea conservării impulsului

Ca în orice sistem mecanic izolat, impulsul total al sistemului înainte de ciocnire este egal cu impulsul total al sistemului după ciocnire.

În sistemul de referință legat de laborator, sistemul laboratorului, nucleul țintă este în repaus, deci $E_{cx} = 0$ și $p_x = 0$.

Legea conservării impulsului se scrie:

$$\vec{p}_{x} = \vec{p}_{y} + \vec{p}_{y}. \tag{5.30}$$

Interacțiunea care are loc este ilustrată în figura 5.6.

Din figura 5.6 se vede că:

$$p_{\rm Y}^2 = p_{\rm x}^2 + p_{\rm y}^2 - 2p_{\rm x}p_{\rm y}{\rm cos}\theta.$$
 (5.31)

În reacțiile nucleare, energiile cinetice sunt mici în comparație cu energiile de repaus, putând fi exprimate nerelativist sub forma:

Fig. 5.6. Conservarea impulsului în reacția nucleară.

$$E_{cY} = \frac{p_Y^2}{2m_Y}; E_{cx} = \frac{p_x^2}{2m_Y} \text{ si } E_{cy} = \frac{p_y^2}{2m_y}.$$
 (5.32)

Înlocuind în relația 5.31, rezultă:

$$2m_{Y}E_{cY} = 2m_{x}E_{cx} + 2m_{y}E_{cy} - 4\sqrt{m_{x}m_{y}E_{cx}E_{cy}}\cos\theta.$$
 (5.33)

Relația 5.29 care definește energia de reacție Q, ținând seama că energia cinetică a nucleului țintă este $E_{c{\bf X}}=0$, devine: $Q=(E_{c{\bf Y}}+E_{c{\bf V}})-E_{c{\bf X}}.$

$$Q = (E_{cY} + E_{cy}) - E_{cx}.$$
 (5.34)

Dar, din relația 5.33, rezultă că:

$$E_{cY} = \frac{m_x}{m_Y} E_{cx} + \frac{m_y}{m_Y} E_{cy} - \frac{2\sqrt{m_x m_y E_{cx} E_{cy}}}{m_Y} \cos \theta,$$
 deci:
$$Q = \frac{m_x}{m_Y} E_{cx} + \frac{m_y}{m_Y} E_{cy} - \frac{2\sqrt{m_x m_y E_{cx} E_{cy}}}{m_Y} \cos \theta + E_{cy} - E_{cx}.$$
 În final:

$$Q = E_{cy} \left(1 + \frac{m_y}{m_Y} \right) - E_{cx} \left(1 - \frac{m_x}{m_Y} \right) - \frac{2\sqrt{m_x m_y E_{cx} E_{cy}}}{m_Y} \cos \theta , \qquad (5.35)$$

relație care dă o altă metodă de măsurare a energiei de reacție.

Probleme rezolvate

1. O țintă de ${}^{7}_{3}$ Li este bombardată cu protoni având energia de 2MeV. Se decelează particule α sub un unghi de 90° față de direcția protonilor incidenți. Să se scrie reacția nucleară care are loc. Să se calculeze energia de reacție și energia particulelor α emise sub unghiul de $\pi/2$. Care este unghiul și energia celeilalte particule rezultate din reacție?

Se cunosc masele de repaus: $m_{\text{Li}} = 7,01545$ u; $m_p = 1,007299$ u; $m_{\text{He}} = 4,0026$ u; $uc^2 = 931,5$ MeV.

Reacția se scrie: ${}_{3}^{7}\text{Li} + {}_{1}^{1}p \rightarrow {}_{2}^{4}\alpha + {}_{2}^{4}\text{He}$, conform legii de conservare a sarcinii și a numărului de nucleoni.

În concordanță cu definiția energiei de reacție (5.29), putem scrie:

$$Q = (m_{\rm Li} + m_p - m_{\rm He} - m_{\alpha})c^2 = 931,5(m_{\rm Li} + m_p - m_{\rm He} - m_{\alpha}).$$
 Înlocuind numeric cu valorile cunoscute se obține:

Q = 931,5(7,01545 + 1,007299 - 4,0026 - 4,0026) = 16,35 MeV.

Ținând cont de relația 5.35, în care $\cos\theta = 0$, rezultă:

$$Q = \left(1 + \frac{m_{\alpha}}{m_{\text{He}}}\right) E_{\alpha} - \left(1 - \frac{m_{p}}{m_{\text{He}}}\right) E_{p}, \text{ de unde: } E_{\alpha} = \frac{Q + E_{p} \left(1 - \frac{m_{p}}{m_{\text{He}}}\right)}{\left(1 + \frac{m_{\alpha}}{m_{\text{He}}}\right)} = \frac{1}{2} \left(1 - \frac{m_{p}}{m_{\text{He}}}\right) E_{p}$$

$$\frac{16,35 + \left(1 - \frac{1,007299}{4,0026}\right)}{1 + \frac{4,0026}{4,0026}} = \frac{16,35 + 2(1 - 0,252)}{2} = \frac{16,35 + 1,496}{2} = 8,92 \text{ MeV}.$$

Din figura 5.7 se vede că:

$$tg \theta = \frac{p_{\alpha}}{p_{p}} = \frac{\sqrt{2m_{\alpha}E_{\alpha}}}{\sqrt{2m_{p}E_{p}}} = \frac{\sqrt{m_{\alpha}E_{\alpha}}}{\sqrt{m_{p}E_{p}}} = \sqrt{\frac{4,0026 \cdot 8,92}{1,007299 \cdot 2}} \cdot \theta = 76^{\circ}43'.$$
Fig. 5.7.

2. Masa nucleului de $^{212}_{84}$ Po este 211,9888 u, cea a nucleului de $^{208}_{82}$ Pb este 207,976650 u. Știind că masa particulei $^4_2\alpha$ este 4,0026 u, să se calculeze energia cinetică a unei particule α emise de poloniu.

Reacția se poate scrie sub forma: $^{212}_{84}\text{Po} \rightarrow ^{4}_{2}\alpha + ^{208}_{82}\text{Pb}$.

Energia eliberată în reacție se poate calcula din relația: $Q=(m_{p_0}-m_{p_h}-m_{\alpha})c^2$. Înlocuind numeric, se obține:

$$Q = (211,9888 - 207,976650 - 4,0026) \cdot 931,5 = 8,89 \text{ MeV}.$$

Această energie este împărțită între particula α emisă și nucleul de Pb care suferă un

recul. Deci: $Q=E_{cPb}+E_{c\alpha}$. Înainte de dezintegrare nucleul de Po era în repaus. Legea de conservare a impulsului se scrie: $\vec{p}_{\alpha} + \vec{p}_{Pb} = 0$; $m_{\alpha} v_{\alpha} - m_{Pb} v_{Pb} = 0 \Rightarrow m_{\alpha} v_{\alpha} = m_{Pb} v_{Pb}$; $(m_{\alpha} v_{\alpha})^2 = (m_{Pb} v_{Pb})^2$.

$$E_{cPb} = \frac{p_{Pb}^2}{2m_{Pb}} = \frac{(m_{\alpha}v_{\alpha})^2}{2m_{Pb}} = \frac{m_{\alpha}v_{\alpha}^2}{2} \cdot \frac{m_{\alpha}}{m_{Pb}} = E_{c\alpha}\frac{m_{\alpha}}{m_{Pb}}.$$

Rezultă că:

$$Q = E_{c\alpha} \frac{m_{\alpha}}{m_{Pb}} + E_{c\alpha} = E_{c\alpha} \left(\frac{m_{\alpha}}{m_{Pb}} + 1 \right)$$
, de unde: $E_{c\alpha} = \frac{Q}{1 + \frac{m_{\alpha}}{m_{Pb}}} = \frac{m_{Pb}}{m_{Pb} + m_{\alpha}} Q$.

Înlocuind numeric, se obține:
$$E_{c\alpha} = \frac{207,976650}{207,976650 + 4,0026}$$
 8,89 = 8,72 MeV.

3. Care este distanta minimă la care o particulă α cu energia cinetică de 5,3 MeV se apropie de un nucleu de cupru (Z = 29)?

La distanța minimă, toată energia cinetică a particulei se transformă în energie potențială:

$$\frac{m_{\alpha}v_{\alpha}^2}{2} = \frac{1}{4\pi\varepsilon_0} \frac{Z_{\alpha}Z_{\mathrm{Cu}}e^2}{r_{\mathrm{min}}} \cdot \mathrm{deci:} \ r_{\mathrm{min}} = \frac{1}{4\pi\varepsilon_0} \frac{Z_{\alpha}Z_{\mathrm{Cu}}e^2}{E_{c\alpha}} \, .$$

Înlocuind numeric, se obține: $r_{\text{min}} = 9.10^9 \frac{2.29 \cdot (1.6 \cdot 10^{-19})^2}{5.3 \cdot 1.6 \cdot 10^{-13}} = 157 \cdot 10^{-16} \text{ m.}$

Probleme propuse

- 1. Seria radioactivă uraniu-radiu începe cu $\frac{238}{92}$ U și se termină cu izotopul stabil $\frac{206}{82}$ Pb. Determinați numărul de dezintegrări α și β din această serie.
 - **R**: 8α și 6β.
- 2. Câte nuclee se dezintegrează în 2 ore din 4 mg de $\frac{222}{86}$ Rn al cărui timp de înjumătățire este de 3,825 zile?

R:
$$1,6\cdot10^{17}$$
.

3. Izotopul radioactiv de $^{60}_{27}$ Co, folosit pe scară largă în medicină, are timpul de înjumătățire de aproximativ 5,3 ani. Ce cantitate este necesară pentru o activitate de 1 mCi?

4. Un preparat de poloniu cu activitatea de 0,5 Ci este pus într-un calorimetru cu capacitatea calorică de 4,18 J/K. Poloniul emite particule α cu energia cinetică de 5,3 MeV. Cu cât crește temperatura calorimetrului într-o oră? Timpul de înjumătățire al poloniului este de 3·10⁻⁷ s.

R: 13,5°C.

5. Izotopul de ²³⁸U are timpul de înjumătățire de 4,5·10⁹ ani și se dezintegrează prin emisie de particule α . Ce valoare are constanta de dezintegrare?

R:
$$4,88 \cdot 10^{-18} \text{ s}^{-1}$$
.

6. O sare de radiu $^{226}_{88}$ Ra cu masa de 1 g se dezintegrează α astfel încât rezultă 10^{10} dez/ zi. Să se calculeze constanta radioactivă.

R:
$$4.3 \cdot 10^{-17} \text{ s}^{-1}$$

7. În precipitațiile care cad pe sol există o cantitate oarecare din izotopul radioactiv de 210 Pb. Dacă în momentul căderii zăpezii la Polul Sud, aceasta are o anumită activitate, ea va scădea în decursul anilor conform legii de dezintegrare radioactivă. Astfel, recoltând zăpada de la diferite adâncimi, se poate determina anul în care a căzut ea.

Presupunem că măsurătorile efectuate la o stațiune de la Polul Sud, în anul 1979, au dat următoarele valori pentru activitatea specifică a zăpezii: $\Lambda_0/m = 48$ imp/min·kg pentru zăpada de la suprafață și $\Lambda/m = 3$ imp/min·kg, pentru zăpada recoltată de la adâncimea h = 840 cm.

Să se determine anul în care a căzut zăpada aflată la adâncimea h și viteza medie de acumulare anuală a zăpezii. Timpul de înjumătățire a $^{210}_{82}$ Pb este $T_{1/2}=21$ ani.

R: 1895; 10 cm/an.

8. Considerând dezintegrarea α a nucleului de poloniu:

$$^{212}_{84}Po \rightarrow {}^{4}_{2}\alpha + {}^{208}_{82}Pb,$$

să se calculeze viteza nucleului de Pb, știind că nucleul de poloniu era în repaus. Se cunosc masele de repaus ale nucleelor de Pb şi de Po şi a particulei α:

$$m_{\rm Po} = 211,9888$$
 u; $m_{\rm Pb} = 207,97665$ u; $m_{\alpha} = 4,002603$ u.

Reamintim că: 1 u = 1,66·10⁻²⁷ kg. 1 eV = 1,6·10⁻¹⁹ J și uc^2 = 931,5 MeV.

R: $3.96 \cdot 10^5$ m/s.

9. Determinați numărul atomic și numărul de masă pentru particulele notate cu x în următoarele reacții nucleare:

$$_{25}^{55}$$
Mn(x, n) $_{26}^{55}$ Fe, $_{7}^{14}$ N(n , x) $_{6}^{14}$ N și $_{6}^{12}$ C(α , x) $_{8}^{15}$ O.

10. Prin bombardarea nucleului de $^{24}_{12}$ Mg cu nuclee x are loc reacția nucleară:

$${}_{12}^{24}\text{Mg} + x \rightarrow {}_{1}^{1}p + {}_{13}^{27}\text{Al}.$$

Determinați numărul atomic și numărul de masă pentru nucleul x, calculați energia de reacție și precizați dacă reacția este exoenergetică sau endoenergetică. Se cunosc masele de repaus:

 $m_{\rm Mg}=23,\!985044$ u, $m_{\rm x}=4,\!002604$ u, $m_{\rm p}=1,\!007299$ u, $m_{\rm Al}=26,\!981535$ u; de asemenea, $uc^2=1,\!5\cdot 10^{-10}$ J.

R:
$$-1,779 \cdot 10^{-13}$$
 J (reacție endoenergetică).

11. Să se determine energia degajată într-o bombă cu hidrogen prin formarea (sinteza) unui kilogram de heliu.

Se cunoaște reacția:

$${}_{1}^{2}D + {}_{1}^{3}T \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

iar energia eliberată într-un singur act este egală cu 28,3·10⁻¹³ J. $m_{\rm D} = 2{,}01410222$ u; $m_{\rm T} = 3{,}01604971$ u; $m_{\rm He} = 4{,}0026$ u; $m_n = 1{,}00869$ u. **R:** 4,245 · 10¹⁴ J.

5.4. Interacția radiației nucleare cu substanța. Detecția radiațiilor nucleare. Dozimetrie

Definiție. Prin radiații nucleare se înțeleg toate radiațiile de natură corpusculară sau de natură electromagnetică (fotonică) emise spontan de nucleele radioactive, rezultate în urma interacțiunilor nucleare sau provenite din radiația cosmică.

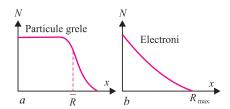
Cunoașterea unei serii de fenomene care însoțesc trecerea acestor radiații prin substanță este importantă pentru găsirea proprietăților caracteristice ale radiațiilor respective, precum și pentru stabilirea mijloacelor de detectare și de protecție împotriva lor. Modul de interacțiune depinde atât de proprietățile radiației respective (energie, masă, sarcină electrică), cât și de proprietățile substanței traversate (densitate, număr atomic, energie de ionizare). Radiația interacționează cu electronii atomilor mediului, producând excitarea sau ionizarea atomilor, sau cu nucleele respective (difuzie elastică, reacție nucleară, formarea de fotoni sau de perechi).

Radiațiile nucleare se împart în categorii după cum particulele pe care le formează sunt încărcate electric sau sunt neutre.

5.4.1. Radiații formate din particule încărcate electric

Aceste particule pot avea masă de repaus mare şi pot fi nuclee sau fragmente nucleare (protoni, particule α, fragmente de fisiune) (cazul A) sau pot avea masă de repaus mică (electroni, pozitroni) (cazul B).

A. Interacția particulelor grele încărcate electric cu substanța


Particulele grele încărcate electric interacționează cu electronii atomilor din substanță provocând fie excitarea, fie ionizarea acestora. Ciocnindu-se cu electronii, particulele grele pierd din energie, dar traiectoria rămâne liniară dat fiind masa mică a electronului ciocnit.

Trecerea radiației nucleare formată din particule grele prin substanță se caracterizează prin două mărimi fizice: (1) pierderea de energie pe unitatea de drum și (2) parcursul total prin substanță.

1. Pierderea de energie cinetică pe unitatea de drum
$$\left(-\frac{dE_c}{dx}\right)$$
 este puternic

dependentă de viteză, ea fiind cu atât mai mare cu cât particula are viteza mai mică și sarcina electrică mai mare. După ce energia cinetică a scăzut sub valoarea energiei de ionizare, particula captează electroni și se oprește în substanță formând un atom neutru, dacă este un proton sau o particulă α .

2. *Parcursul total* al particulei prin substanță, *R*, se definește ca acea grosime a stratului de substanță străbătut de particulă până când valoarea energiei sale

Fig. 5.8. *a, b.* Dependența intensității fasciculului de parcursul total al particulei.

cinetice devine egală cu cea corespunzătoare agitației termice, E_a . Este dependent de natura substanței, de sarcina și de energia particulei.

Prin pierderea treptată a energiei, particulele rămân în număr constant pe o distanță oarecare, până când energia se reduce la cea de agitație termică, pentru care intensitatea fasciculului (numărul de particule care trec în unitatea de timp printr-o suprafață dată) scade brusc (fig. 5.8, *a*).

B. Interacțiunea particulelor ușoare încărcate electric cu substanța

Pierderea de energie a electronilor în interacțiune cu substanța se produce prin două mecanisme: ionizare (excitare) și radiație de frânare.

Electronul, având masa foarte mică, va fi puternic deviat la ciocnirea cu electronii atomici. Parcursul electronilor va fi o linie frântă. Un fascicul inițial de electroni monocinetic, va prezenta un spectru larg de energii după trecerea prin substanță. Pierderea de energie pe unitatea de lungime se exprimă printr-o formulă asemănătoare cu formula lui Bohr.

Capacitatea de ionizare a electronului dispare când energia lui cinetică devine egală cu energia de ionizare a moleculelor substanței traversate.

La energii mari intervine comportarea relativistă a electronului și el pierde energie prin mecanismul radiației de frânare. Electronul liber din fasciculul incident pe probă este atras de nucleul prin apropierea căruia trece, suferind astfel o deviere, proces ce corespunde unei accelerări. În electrodinamică se arată că orice particulă electrizată în mișcare accelerată sau decelerată emite o radiație electromagnetică. Se emite astfel un foton care își ia energia de la electronul liber. Pierderea de energie prin radiație crește cu numărul atomic Z al atomului constituent al substanței traversate de fasciculul electronic și crește totodată cu energia electronului, E, conform relației:

$$\left(-\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{rad}} = \frac{E}{l_r},$$

unde l_r este o constantă numită *lungime de radiație*. Începând de la o energie E > 800/Z [MeV] pierderile de energie prin radiație întrec pierderile de energie prin ionizare.

În privința drumului parcurs de electroni, traiectoria lor nefiind rectilinie, noțiunea de parcurs R devine nedefinită. Deosebirea dintre fasciculul de particule grele și fasciculul de electroni devine evidentă dacă se reprezintă grafic variația numărului de particule N care străbat un strat de substanță în funcție de grosimea acestui strat (fig. 5.8 b).

• Procesele de ionizare și de frânare micșorează energia fasciculului de electroni în timp ce ciocnirile duc la împrăștiere. Aceste efecte fac ca atenuarea numărului de electroni cu distanța parcursă în stratul de substanță, x, să se producă după o lege exponențială (\sim e^{- μx}, unde μ este un coeficient de atenuare) și, pentru că există și procese de încetinire, se poate vorbi și de un parcurs maxim R_{max} .

5.4.2. Interacția radiațiilor formate din particule neutre cu substanța

A. Interacția radiației gamma (γ) cu substanța

Radiațiile γ interacționează cu substanța străbătută prin următoarele procese: (1) efect fotoelectric (fotoni γ de energie mai mică, străbătând substanțe cu număr atomic Z mare), (2) efect Compton (energie medie a radiației γ , Z mic) și (3) formarea de perechi (fotoni γ cu energie foarte mare pentru că în acest caz radiația interacționează cu nucleul atomic prin formarea unei perechi electron (e^-) – pozitron (e^+)). Prezența acestor trei procese face ca mecanismul absorbției radiației γ să fie total diferit de mecanismul absorbției altor tipuri de radiație în substanță. Deoarece fotonii nu au nici sarcină electrică (nu sunt supuși acțiunii forțelor electrostatice), nici masă de repaus, mișcându-se cu viteza luminii, radiația γ nu este încetinită de substanță, ci doar absorbită sau difuzată. La trecerea printr-un strat de grosime dx, intensitatea fasciculului I, scade cu dI, scădere proporțională cu grosimea dx a stratului și cu intensitatea I(x) la intrarea în stratul respectiv, adică:

$$dI = - \mu I dx$$
.

Semnul minus arată că intensitatea scade pe măsură ce grosimea stratului crește. Integrând, se obține legea exponențială de absorbție:

$$I = I_0 e^{-\mu x}, \tag{5.36}$$

unde I_0 este intensitatea inițială a fasciculului, I — intensitatea fasciculului după ce a străbătut în substanță distanța x, iar μ — coeficientul liniar de atenuare care depinde de proprietățile mediului și de energia fotonilor γ , măsurat în m^{-1} .

Pe baza relației 5.36 se poate deduce expresia pentru distanța după care intensitatea radiației se reduce la jumătate, numită grosime de înjumătățire $d_{1/2}$:

$$\frac{I_0}{2} = I_0 e^{-\mu d_{1/2}} \to e^{-\mu d_{1/2}}$$

Logaritmând se obține:

$$d_{1/2} = \frac{\ln 2}{\mu} = \frac{0,693}{\mu} \,. \tag{5.37}$$

Se mai definesc: grosimea masică, x_m , ca produsul dintre grosimea liniară și densitatea absorbantului

$$x_m = \rho x$$

și coeficientul de atenuare masic μ_m ca raportul dintre coeficientul liniar de atenuare și densitatea absorbantului

$$\mu_m = \mu/\rho$$
.

Deoarece la atenuarea (absorbția) fasciculului de radiații γ contribuie toate cele trei efecte menționate anterior (fotoelectric, Compton și formare de perechi), coeficientul total de absorbție μ va fi dat de o sumă de coeficienți caracteristici fiecărui efect:

$$\mu = \mu_f + \mu_c + \mu_p.$$

Variația coeficientului de atenuare μ cu energia $h\nu$ a radiației γ este redată comparativ în figura 5.9, în cazul elementelor aluminiu, cupru și plumb.

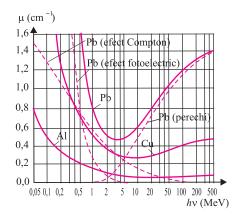


Fig. 5.9. Variația coeficientului de atenuare cu energia radiației γ pentru diferite elemente.

La energii mai mici, corespunzătoare domeniului hertzian si infrarosu $(v = 10^5 - 10^{14} \text{Hz})$ apare o interactione a fotonilor numită împrăștierea fără modificarea frecvenței. Acest proces constă în faptul că radiația electromagnetică interacționează cu un electron al unui atom și îl aduce în stare de oscilație cu o frecvență egală cu aceea a undei incidente. Acest lucru este posibil dacă electronul formează un oscilator pentru care frecvența undei incidente reprezintă o frecvență proprie v₀. Electronul oscilant reemite fotonul de aceeași frecvență într-o direcție oarecare din spațiu. Acest proces de interacțiune este

un *proces de împrăștiere*, pentru că fotonul este scos din fasciculul inițial, care are o anumită direcție, și este reemis într-o altă direcție. Procesul se mai numește *împrăștiere Thomson;* acesta se desfășoară, deci, fără modificarea frecvenței.

La radiațiile infraroșii se întâlnește adesea un proces de interacțiune care implică absorbția acestora. Sistemele moleculare și atomice sunt oscilatori ale căror frecvențe proprii sunt egale cu cele ale fotonilor. O astfel de radiație, incidentă pe un corp, este absorbită fără a mai fi urmată de reemisia unei alte radiații; energia acesteia se transformă în energie internă, ceea ce are ca efect ridicarea temperaturii corpului respectiv.

B. Interacția radiației neutronice cu substanța

Neutronii, particule neutre cu masă de repaus mare, interacționează mai ales cu nucleele atomice prin (1) difuzie, (2) împrăștiere și (3) captură.

(1) Prin difuzie neutronii rapizi suferă ciocniri, își pierd din energia lor cinetică până ajung la energii de același ordin de mărime cu energia de agitație termică a particulelor mediului de interacție (proces numit *termalizare*). Acum, ei se

numesc neutroni termici și difuzează – adică se răspândesc în mediu – la fel ca moleculele unui fluid.

- (2) La ciocnirea cu nucleul, neutronul, pe lângă faptul că își pierde din energia cinetică, mai este și împrăștiat, ceea ce duce la scăderea intensității radiației neutronice.
- (3) Captura neutronilor de către nuclee reprezintă partea principală a atenuării. Eficiența procesului este caracterizată prin mărimea fizică secțiune eficace de captură, σ_a , care variază cu energia cinetică E_c a neutronilor conform graficului din figura 5.10. Maximele secțiunilor eficace de captură caracterizează captura prin

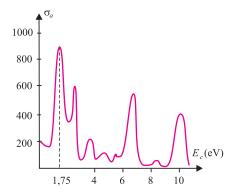
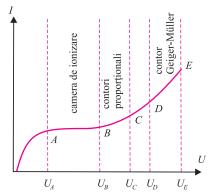


Fig. 5.10. Variația secțiunii eficace de captură cu energia cinetică a neutronilor în procesul de captură a neutronilor de către nuclee.

absorbție de rezonanță. Există elemente cu secțiune eficace de captură foarte mare, ${}^{10}_{5}$ B și ${}^{113}_{48}$ Cd, de exemplu – deci buni absorbanți ai neutronilor, folosiți pentru protecția biologică împotriva radiației neutronice. Captura neutronilor produce întotdeauna o radiație secundară (proton, γ), ca de exemplu: ${}^{1}_{1}$ H(n, γ) ${}^{2}_{1}$ H; ${}^{14}_{7}$ N(n, p) ${}^{14}_{6}$ C.


5.4.3. Detecția radiațiilor nucleare

Măsurarea efectelor specifice produse de radiațiile nucleare la trecerea prin substanță permite detectarea radiațiilor, adică punerea în evidență a tipului de particule nucleare, măsurarea numărului lor și a altor caracteristici, cum ar fi energia și masa lor. Aparatele folosite pentru aceste măsurători se numesc *detectori*.

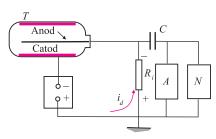
Efectele specifice mai importante care apar la trecerea radiațiilor nucleare prin substanță sunt:

- efecte electromagnetice (ionizarea, modificarea proprietăților electrice şi magnetice);
 - optice (producerea de scintilații, adică scânteieri în cristale);
 - fotochimice (impresionarea emulsiei fotografice);
 - termice și mecanice (modificarea densității, a durității) etc.

Metodele de detectare prin ionizare se bazează pe ionizarea unui gaz aflat într-un detector de către o radiație incidentă. Ionii și electronii produși prin ionizare sunt atrași de electrozii introduși în gaz, aflați sub tensiune, fac să apară ceea ce se numește o descărcare electrică. Curentul electric iono-electronic al descărcării este înregistrat la ieșirea detectorului sub formă de impuls de tensiune la bornele unui rezistor de sarcină. Reprezentarea grafică a dependenței intensității curentului de descărcare funcție de tensiunea aplicată electronilor permite stabilirea tipurilor de detectori cu descărcare în gaze (fig. 5.11)

Fig. 5.11. Dependența intensității curentului de descărcare de tensiunea aplicată electrozilor.

a. Camera de ionizare funcționează corespunzător palierului AB al curbei, curentul de descărcare fiind produs numai de electronii și ionii primari, deci numărul de impulsuri înregistrate depinde numai de natura și energia particulei incidente.


b. Detectorul proporțional corespunde porțiunii BC a graficului curent-tensiune a unei descărcări electrice în gaz. Tensiunea de accelerare $U=200-500\,\mathrm{V}$ este suficient de mare pentru a apărea și ionii și electronii secundari; astfel, impulsul înregistrat depinde și de valoarea tensiunii U aplicate electrozilor din interiorul gazului aflat la o presiune

de aproximativ 100 Torr.

Proporționalitatea care există între intensitatea semnalului și numărul de ioni primari conduce la identificarea particulelor incidente. În cazul unui fascicul de radiații α și β , de exemplu, la tensiuni relativ mici vor fi înregistrate particulele α de energii mari care produc cei mai mulți ioni primari. Cu creșterea tensiunii crește factorul de amplificare, dependent de U și de natura gazului din detector, el fiind cuprins între 10 și 10^6 ; vor fi deci înregistrate toate radiațiile α , precum și radiațiile β care vor da un semnal suficient de intens pentru a putea fi măsurat.

Un asemenea contor poate fi utilizat atât pentru numărarea particulelor cât și pentru determinarea energiei acestora.

c) *Contorul Geiger-Müler* (fig. 5.12) funcționează corespunzător intervalului *DE* a curbei curent-tensiune reprezentată în figura 5.11.

Fig. 5.12. Schema unui contor Geiger-Müller.

Este constituit dintr-un anod (A) sub forma unui fir subțire (0,01 mm) din wolfram și un catod (C) de forma unui cilindru cu raza de 1 cm, coaxial cu firul, alcătuit dintr-un strat conductor depus pe suprafața interioară a incintei unui tub de sticlă. Tensiunea între electrozi se stabilește cu ajutorul unei surse de înaltă tensiune (SÎT) în jur de 1000 V, valoare cu ceva mai mică decât cea necesară pentru a declanșa descărcarea. Particula

ionizantă care pătrunde în tub se ciocnește cu moleculele gazului, formează ioni care, la rândul lor, ionizează alte molecule. Ionii pozitivi se îndreaptă spre cilindru, electronii spre fir, stabilindu-se curentul de descărcare de intensitate i_d ; acesta dispare rapid prin scurgerea electronilor la "masă", prin rezistorul de rezistență $R_i = 500 \text{ k}\Omega$. Contorul poate înregistra o nouă particulă, dacă ea succede celei anterioare la un interval de timp de minim 200 μ s. Curentul de descărcare produs de contor formează impulsul de tensiune $U_d = i_d R_i$ care este cules la bornele

rezistorului R_i , amplificat și trimis într-un aparat de înregistrare N care indică numărul de impulsuri primite în unitatea de timp și numărul total de impulsuri primite pe durata înregistrării. Condensatorul C blochează componenta continuă a impulsului de tensiune. Fiind un detector robust, relativ sigur în funcționare, detectorul Geiger-Müller pentru radiații β și γ este larg folosit în aplicații industriale și în cercetări geologice de teren.

d) Contorul de particule cu scintilație este alcătuit dintr-un cristal de scintilație și un fotomultiplicator (fig. 5.13). Se bazează pe înregistrarea radiației de fluorescență care apare sub formă de scurte emisii de lumină datorită interacției radiației nucleare incidente cu atomii cristalului de scintilatie CS. Cristalele scintilatoare sunt: ZnS(Ag), adică sulfură de zinc activată cu argint sau ZnS(Cu) pentru detecția radiației nucleare α , cristale de NaI (Tl), pentru

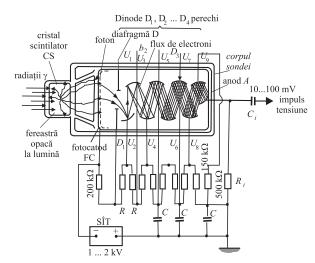


Fig. 5.13. Contorul de particule cu scintilație.

particulele β și radiația fotonică dură γ etc. Scintilațiile emise cad pe fotocatodul din cesiu și antimoniu al unui fotomultiplicator. Fotoelectronii emiși de acesta sunt accelerați în câmpul primului electrod-dinodă D_1 și, căzând pe dinodă, scot din ea un număr mai mare de electroni prin efect de emisie electronică secundară. Procesul de multiplicare electronică se repetă la fiecare dinodă. Are loc o amplificare de ordinul 10^8 a electronilor inițiali primari. Cu dinode formate dintr-un aliaj argint-magneziu, se obțin la ieșire curenți de $60~\mu$ A/lumen. Contoarele de acest tip permit înregistrarea particulelor ce se succed la intervale de 10^{-9} s. Amplitudinea semnalului fiind proporțională cu energia cinetică a particulei incidente, permite calculul acestei energii.

e) Detectorul Cerenkov are ca principiu de funcționare efectul cu același nume.

Când o particulă cu sarcină electrică de energie mare pătrunde într-un mediu de indice de refracție n cu o viteză v_p mai mare decât viteza luminii v în mediul respectiv, ea va emite o lumină alb-albăstruie care se propagă într-un con limitat

de unghiul lui Mach, $\varphi = \frac{1}{\beta n} \left(\beta - \frac{v_p}{c} \right)$, axa conului fiind tangentă la traiectoria particulei.

Radiația este detectată de un fotomultiplicator. Viteza particulei se determină din unghiul φ al conului de radiație. Este folosit atât pentru detectarea particulelor

cu viteze extrem relativiste, cum ar fi protonii și mezonii din radiația cosmică, cât și pentru selectarea particulelor de o anumită viteză.

- f) Emulsia nucleară. Efectul chimic al radiațiilor nucleare este folosit și în cazul emulsiei nucleare, emulsie fotografică groasă până la 2 mm, care pune în evidență particule încărcate, acestea reducând AgBr la argint metalic. Traiectoriile particulelor prin emulsie sunt marcate de dârele negre care apar după developare, observabile la microscop. Efectul chimic al radiațiilor este folosit și la unele tipuri de dozimetre profesionale pentru controlul dozei de iradiere a celor care lucrează în câmp de radiații nucleare.
- g) Detectorii cu cristale semiconductoare. Funcționarea detectorilor cu cristale semiconductoare se bazează pe fenomenul de formare de perechi electron-gol în cristalele semiconductoare atunci când acestea sunt penetrate de radiații nucleare. Purtătorii de sarcină colectați prin aplicarea unei tensiuni formează un puls de tensiune a cărui amplitudine este proporțională cu energia particulelor nucleare înregistrate. Datorită sensibilității și rezoluției energetice foarte bune a aparaturii electronice de înregistrare, detectorii cu semiconductoare sunt folosiți în cercetările de fizică nucleară.
- h) Camera cu ceață (construită în anul 1912 de fizicianul scoțian C.T.R. Wilson) este folosită pentru detectarea particulelor elementare. Principiul de functionare se bazează pe proprietatea ionilor de a constitui centre de condensare pentru vaporii de apă sau de alcool suprasaturați. Este formată dintr-un cilindru de sticlă, doi electrozi care atrag ionii de impurități și un piston. În cilindrul izolat adiabatic există aer, vapori de apă și o cantitate de apă, astfel ca vaporii să fie saturați. La o destindere a gazului vaporii se răcesc, trec în stare de vapori suprasaturați, cu o presiune mai mare ca presiunea de vapori ai apei, care este o stare de neechilibru. Când o particulă cu sarcină electrică pătrunde în detector, ionizează atomii cu care se întâlnește și, pe traiectoria sa, se formează nuclee de condensare, atomii ionizați în jurul cărora are loc condensarea vaporilor în picături microscopice. Traiectoria devine vizibilă și poate fi fotografiată stereoscopic, furnizând detalii importante despre natura particulei. Actionând asupra camerei cu un câmp magnetic deflector și măsurând raza de curbură, lungimea traiectoriei și sensul deviației se pot determina sarcina, masa și energia cinetică a particulei, pornind de la relația mv = qRB.
- i) În camera cu bule, particulele ionizante aflate într-un lichid supraîncălzit, adică la temperatură mai mare decât temperatura de fierbere la presiunea dată, sunt puse în evidență prin bulele microscopice de vapori care se formează în jurul atomilor ionizați. Față de camera cu ceață, are avantajul unei probabilități (posibilități) mai mare de ionizare datorită distanțelor intermoleculare mai mici în lichid și, ca atare, sensibilitatea și precizia mărite. Dezavantajul constă în numărul mic de particule care pot fi studiate simultan.

5.4.4. Dozimetrie

Dozimetria este un domeniu al fizicii, care se ocupă cu măsurarea, studierea și calcularea caracteristicilor radiațiilor ionizante și a interacțiunii lor cu mediul.

Inițial, dozimetria se ocupa cu protecția la iradierea cu radiații Röntgen și gamma. Datorită apariției reactoarelor nucleare, a acceleratoarelor de particule și a radionuclizilor, au apărut noi surse de iradiere: fluxuri de neutroni, de electroni, de pozitroni și de ioni rapizi. A apărut astfel necesitatea cunoașterii energiei absorbite nu numai de apa și țesuturile biologice, dar și de alte materiale.

Mărimi folosite în dozimetrie

Intensitatea radiației ionizante este egală cu energia radiației care străbate unitatea de arie în unitatea de timp. Se măsoară în röntgeni (R).

Un röntgen este intensitatea radiației care produce într-un kilogram de aer, în urma ionizării, o sarcină egală cu $2,58 \cdot 10^{-4}$ C.

Doza de ionizare, J, este egală cu numărul de ioni produși (sarcina electrică) în unitatea de masă:

$$J = \frac{\Delta Q}{\Delta m}$$
; $[J]_{SI} = C/kg$; 1 R (röntgen) = 10⁻⁴ C/kg.

Efectele produse de radiații nu constau numai în ionizarea mediului străbătut. Intensitatea efectelor este cu atât mai mare cu cât transferul de energie pe unitatea de masă a corpului iradiat este mai mare.

Mărimea care caracterizează transferul de energie pe unitatea de masă se numește doză absorbită D_{abc} :

$$D_{abs} = \frac{\Delta E}{\Delta m}$$
; $[D_{abs}] = J/kg = Gy (gray)$

Numele unității de măsură a fost dat în onoarea fizicianului britanic L.H. Gray care a adus însemnate contribuții în utilizarea radiațiilor pentru tratarea cancerului.

În sistem tolerat se folosește unitatea numită rad (Radiation Absorbed Dose). $1 \text{ rad} = 10^{-2} \text{ Gy}.$

Ne interesează efectele biologice ale radiațiilor. Aceste efecte depind nu numai de energia acestora dar și de tipul radiațiilor, de doza administrată în unitatea de timp, de natura țesutului iradiat. Radiațiile sunt nocive și prin durabilitatea efectelor lor.

Țesuturile cele mai radiosensibile sunt cele ale căror celule se înmulțesc cel mai rapid: sângele, organele hematopoetice, mucoasele, organele interne (plă-mâni, rinichi etc.), țesuturi musculare, țesuturi osoase și țesutul nervos.

Între mărimea fizică (D_{abs}) și cea biofizică (D_{echiv}) există o directă proporționalitate caracterizată prin factorul de proporționalitate f_R numit factor pondere al radiației.

Cu cât acest factor este mai mare, efectele dozei absorbite vor fi mai pronunțate.

În tabelul 5.2 sunt date valorile lui f_R pentru câteva tipuri de radiații.

Prin urmare, doza echivalentă D_{echiv} sau doza biologică este dată de expresia:

Tipul radiației	α	neutroni	potoni	β	γ, Χ
f_R	20	10-20	10	1	1

Tabelul 5.2

$$D_{echiv} = f_R D_{abs'} \cdot [D_{echiv}]_{SI} = Sv \text{ (sievert)}.$$
 (5.39)

Unitatea de măsură pentru doza echivalentă este tot J/kg, dar se numește sievert (cu simbolul Sv), în onoarea fizicianului suedez Rolf Sievert, care a adus contribuții la măsurarea și standardizarea dozelor de radiații utilizate în terapia cancerului.

În sistem tolerat se utilizează unitatea de măsură numită rem (röntgen equivalent for man). D_{echiv} caracterizează efectele biologice ale radiațiilor:

$$1 \text{ rem} = 10^{-2} \text{ Sv.}$$

Țesuturile și organele corpului uman sunt afectate în mod diferit, chiar și la aceeași doză echivalentă primită. Ca atare, fiecărui țesut sau organ i se atribuie un factor de ponderare al țesutului, f_T . Cu cât acest factor este mai mare, cu atât actiunea dozei efective va fi mai evidentă.

Produsul dintre doza echivalentă și factorul de ponderare al țesutului iradiat se numește doză efectivă, D_{ef} :

$$D_{ef} = f_T D_{\text{echiv}}$$
.

Tabelul 5.3

Unitatea de măsură pentru doza efectivă este tot J/kg și se numește tot sievert.

În tabelul 5.3. sunt date valorile pentru f_T . Când corpul uman este iradiat în întregul său, doza efectivă pentru întregul organism este suma dozelor efective absorbite de la câmpul de radiații nucleare. Boala provocată prin iradiere cu doze mari se numește boală actinică.

țesutul sau organul	f_{T}
testicole sau ovare	0,20
măduva osoasă, plămân, stomac, colon	0,12
tiroidă, esofag, sân, ficat vezica urinară	0,05
piele	0,01

Menționăm că: unitatea tolerată *rad* este pentru doza absorbită de *orice corp*, iar *rem* este unitate pentru doza absorbită de *tesuturile vii*.

Sievertul este echivalentul de doză pentru țesutul viu iradiat cu radiații având factorul $f_p = 1$ când doza absorbită de țesut este egală cu 1 gray.

$$1 \text{ Sv} = F_T \cdot 1 \text{ Gy.}$$
Se mai definesc: $-$ debitul dozei absorbite $d = D_{abs}/t$;
 $-$ debitul dozei biologice $b = D_{echi}/t$. (5.40)

5.4.5. Iradierea naturală și iradierea artificială

O persoană care locuiește în România primește, în medie, datorită surselor de radiații, o doză efectivă de 2,3 mSv/an care se compune din:

 radiația cosmică 	0,28 mSv/an;
 radiația gamma terestră 	0,46 mSv/an;
- radionuclizii din organism:	0,23 mSv/an (fără radon);
 radonul şi produşii săi 	1,30 mSv/an.

TOTAL (rotunjit)

2,3 mSv/an.

Această doză variază de la zonă la zonă, depinzând și de alți factori cum ar fi: altitudinea și acumulările locale de radon.

La iradierea naturală se adaugă iradierea medicală pentru diagnosticare și tratament, care reprezintă cea mai importantă sursă de iradiere artificială pentru populație și care poate fi bine controlată. De asemenea, individul poate încasa radiații de la undele radio, radar, televizor sau de la cuptoare cu microunde.

Doza de radiații încasată depinde de intensitatea sursei, distanța față de sursă și timpul de expunere.

Specialiştii susţin că, datorită efectelor biologice, pentru un individ din populaţie (nu pentru cei expuşi profesional), ar trebui să se admită o iradiere artificială medie, în doze efective, de numai 1 mSv/an peste *iradierea naturală medie de 2,3* mSv/an.

În reactoarele nucleare se produc cele mai însemnate cantități de materiale radioactive. În funcționare normală,

Tabelul 5.4 Doze efective de iradiere

Radiație naturală	$D_{ m ef}$
raze cosmice: radiații existente în materiale	0,28 mSv/an
de construcție	0,4 mSv/an
călătorie cu avionul:	0,04 mSv/h
Radiație artificială	
radiografie X:	0,4 mSv
analize medicale cu bariu:	8,75 mSv
televizor:	0,02 mSv/h

reactoarele energetice au o influență mică asupra mediului datorită măsurilor de protecție și control care se aplică în cazul acestora. În schimb, în cazul unui accident grav influența asupra mediului și populației poate fi nefastă. De aceea, se iau cele mai eficiente măsuri pentru creșterea siguranței în funcționarea centralelor nucleare.

În Marea Britanie, țară cu o industrie nucleară (civilă și militară) foarte dezvoltată, emisiile radioactive din instalațiile nucleare au o contribuție de 0,1% din doza totală.

În conformitate cu normele naționale și internaționale, pentru populație se admite *încasarea anuală* a unei doze efective limită de 5 mSv (0,5 rem), iar pentru personalul de exploatare din centralele nucleare de 50 mSv (5 rem).

Există anumite zone în India, China, Japonia sau Brazilia unde grupuri mari de oameni primesc doze de radiație naturală de 3–4 ori mai mare decât doza medie pe glob, fără să se fi constatat o incidență crescută a cancerului la populație. Se constată, deci, că dozele maxime permise pentru populația care locuiește în apropierea centralelor nucleare (5 mSv/an) este mult mai mică decât doza primită de populațiile din zonele amintite mai sus (7–10 mSv/an).

Rapoartele de la mai multe centrale nucleare electrice în funcțiune au indicat că dozele efective individuale de expunere anuală a celor mai afectate categorii de personal de exploatare din centrală sunt cuprinse între 1 și 10 mSv, constatându-se deci încasarea unor doze profesionale mult sub cele maxim permise.

Efectele radiațiilor. Interacția radiațiilor cu substanța nu diferă, în faza inițială, dacă materia este vie sau fără viață, constând dintr-un transfer de energie.

Utilizarea radiațiilor în condiții controlate poate avea efecte benefice asupra omului. Este cunoscută utilizarea radiațiilor în tratamentele medicale (distrugerea celulelor canceroase), diagnosticări (radiografii), în industria alimentară (conservarea alimentelor) și în industria farmaceutică (sterilizarea instrumentelor chirurgicale) etc.

Pe de altă parte, însă, radiațiile pot produce importante distrugeri celulare. *Efectele biologice* ale radiațiilor pot fi grupate în:

- efecte care apar la nivelul celulelor şi acţionează asupra fiziologiei individului expus, provocând unele distrugeri care ar putea conduce la moarte sau la reducerea speranței de viață;
- efecte genetice, care apar în celulele germinale, conducând astfel, la mutații genetice la descendenți.
- O boală actinică gravă (iradiere în doze mari) se manifestă prin următoarea succesiune cumulativă de afecțiuni: accentuată leucopenie (scăderea progresivă a numărului de globule albe din sânge), căderea părului, sterilitate completă, hemoragii interne și deces.

În accidente nucleare, la o doză efectivă încasată de 1000 Sv: moarte în minutele următoare; la 7 Sv: 90% moarte în lunile următoare. Pentru doze efective cuprinse între 2,5–4 Sv: anxietate, senzație de vomă, modificarea compoziției sangvine, infecții cu risc letal, peste 10% mortalitate în lunile următoare.

Radioprotecția

În locurile în care apar doze de radiații mai mari decât cele maxime admise, se impune luarea unor măsuri de protecție prin ecranarea surselor radioactive, diferențiat, în funcție de natura radiației, după cum urmează:

- reducerea timpului de expunere la radiații;
- mărirea distanței față de sursa de radiații, deoarece doza absorbită scade direct proporțional cu pătratul distanței față de sursă;
- împotriva fluxurilor de radiații γ se folosesc ecrane din materiale cu Z mare (plumb) care absorb puternic radiația γ ;
 - radiațiile α sunt oprite cu ecrane de grosime potrivită din materiale cu Z mic;
- ca materiale de ecranare pentru fluxurile de neutroni se folosește un moderator (apa grea sau grafitul) și un absorbant (cadmiu sau bor);
- pentru radiația β , plexiglasul oferă o foarte bună protecție; un strat cu grosimea de 1 cm este suficient pentru a absorbi complet radiația β ;
 - purtarea unui echipament de protecție;
- administrarea unor substanțe chimice (cistamină, de exemplu) înainte sau după posibila iradiere.

Doza de radiație absorbită se măsoară cu *dozimetre*. Există dozimetre individuale – stilodozimetre și fotodozimetre și dozimetre instalate în încăperi – dozimetre colective.

Dozimetrele conțin: un traductor – care transformă energia radiațiilor detectate în energie de curent electric – și un aparat de măsură etalonat direct în unități de doză de radiații.

Problemă rezolvată

Grosimea de înjumătățire pentru un fascicul de radiații γ care trece prin plumb este de 0,539 cm. Să se calculeze:

- a) grosimea și grosimea masică a absorbantului pentru care intensitatea scade de 10 ori.
- b) coeficienții de atenuare liniari și masici ($\rho_{Pb}=11,34\cdot 10^3$ kg/m³).

a)
$$I = I_0 e^{-\mu x}$$
 dar $\mu = \frac{0.693}{d_{1/2}}$ deci: $\frac{I_0}{10} = I_0 e^{-\frac{0.693}{d_{1/2}}x}$ logaritmând se obține:

$$-\ln 10 = -\frac{0.693}{d_{1/2}}x \rightarrow x = \frac{d_{1/2}}{0.693} \ln 10 = 1.79 \text{ cm}.$$

$$x_m = \rho x = 11,34 \cdot 1,79 = 20,3 \text{ g/cm}^2.$$

b)
$$\mu = \frac{0,693}{d_{1/2}} = 1,286 \text{ cm}^{-1} \text{ și } \mu_m = \mu/\rho = 0,1134 \text{ cm}^2/\text{g}.$$

Probleme propuse

1. Câte ionizări poate face în parcursul său o particulă având energia de 4,2 MeV, dacă pentru fiecare act de ionizare se transferă energia de 20 eV?

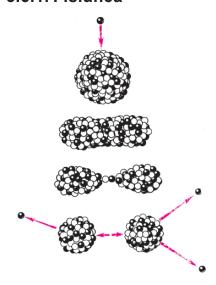
R: $2,1\cdot10^5$.

2. Radiația γ cu energia 662 keV are coeficientul de atenuare în plumb de 1,16 cm⁻¹. Ce grosime trebuie să aibă un strat de plumb pentru a micșora de opt ori intensitatea radiației γ ?

R: 1,79 cm. [Indicație:
$$\frac{I(x)}{I(0)} = e^{-\mu x} = \frac{1}{8}$$
]

3. Câte grosimi de strat de plumb de înjumătățire a radiației γ sunt necesare pentru a atenua intensitatea radiației de opt ori?

R: 3
$$d_{1/2}$$
.


4. Cât trebuie să fie grosimea unui perete de beton care să realizeze aceeași ecranare a radiațiilor γ ca și un perete de plumb gros de 10 cm? Se știe că plumbul este de cinci ori mai dens decât betonul.

R: 0,5 m.

5. Care este relația dintre unitățile sievert și gray?

5.5. Fisiunea nucleară. Reactorul nuclear¹

5.5.1. Fisiunea

Fig. 5.14. Mecanismul de fisiuni binare a uraniului $^{235}_{92}$ U.

Fisiunea reprezintă un proces spontan sau provocat prin bombardare cu particule $(n, p, d, \alpha, \gamma)$ a nucleelor elementelor grele, care se divid în două sau în mai multe fragmente (nuclee) de mase comparabile.

În anul 1938, O. Hahn şi F. Strassman emit ipoteza că la bombardarea nucleelor de uraniu cu neutroni lenți, acestea se fragmentează în nuclee mai uşoare, prin proces de "fisiune". Termenul de fisiune a fost introdus de Lise Meitner şi O. Frish, în anul 1939. Aceştia au dat şi prima interpretare calitativă a fisiunii prin asimilarea nucleului cu o picătură de lichid nuclear. În această reprezentare, în urma energiei primite de la neutronul absorbit, nucleul începe să vibreze în jurul formei sferice de echilibru. Dacă

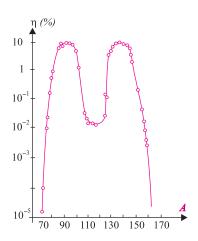
amplitudinea acestor oscilații este suficient de mare, nucleul nu mai poate reveni la forma sferică, producându-se o "gâtuire" (fig. 5.14.), accentuată și de repulsia coulombiană a protonilor din nucleu. Distanța r dintre centrele de masă a celor două părți ale nucleului se mărește și pentru $r \approx 10^{-13}$ m, așa cum ulterior a stabilit teoria, nucleul se divide. Nucleele apărute prin rupere se resping puternic coulombian, energia potențială de interacție a celor două nuclee separate transfor-

Fig. 5.15. Traiectoriile, într-o cameră cu ceață, a două nuclee rezultate din fisiunea nucleului ²³⁵U.

mându-se în energia lor cinetică. În figura 5.15 se pot observa, într-o cameră Wilson, traiectoriile a două nuclee rezultate din fisiunea nucleului de uraniu ²³⁵U. Viteza nucleelor la separarea lor este de ordinul a 10⁷ m/s. Nucleele cu o energie cinetică care totalizează aproximativ 168 MeV, mişcându-se în mediu, pierd energia prin ionizări. Finalmente, această energie se transferă în energie termică a mediului în care are loc frânarea nucleelor. Nucleele obținute la sciziune au și o energie de excitație suficient de mare încât emisia de neutroni să fie foarte probabilă. Aceștia sunt emiși atunci când distanța de separare dintre nuclee este în jur de

¹ Vezi şi http://en.wikipedia.org/wiki/nuclear-power.htm.

 10^{-10} m, fiecare fragment nuclear emiţând unul sau doi neutroni. Se emit în medie 2–3 neutroni, fiecare de energie medie aproximativ 2 MeV. Procesul emisiv este continuat de radiaţia γ care totalizează cam 7 MeV pentru cele două fragmente. Radiaţiile neutronică şi fotonică γ astfel emise se numesc radiaţii prompte. Într-un interval de timp de 10^{-12} s se emit neutroni întârziaţi. Aceştia reprezintă abia 0,75% din numărul total de neutroni produşi în cadrul procesului de fisiune. Dacă neutronii prompţi rapizi pătrund în substanţa moderatoare a unui reactor nuclear, aceştia îşi pierd rapid energia cinetică, termalizându-se; în final energia lor cinetică se transformă în energie termică a mediului în care sunt


frânați. Distribuția procentuală a nucleelor – fragmente nucleare, în funcție de numărul de masă A pentru uraniu $^{235}_{92}$ U este prezentată în figura 5.16. Numerele de masă ale fragmentelor obținute sunt cuprinse între A=72 și A=162. Cei mai probabili produși de fisiune corespund celor două maxime ale curbei și au, respectiv, numerele de masă în jur de 95 și 140, ca de exemplu 90 Sr, 91 Y, 95 Zr și 137 Cs, 139 Xe, 142 Ba, 144 Ce.

În cazul ²³⁵₉₂U, o fisiune de probabilitate de realizare apropiată de cea maximă este următoarea:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{95}_{38}Sr + {}^{139}_{54}Xe$$

$$\downarrow \beta^{-} \qquad \downarrow \beta^{-}$$

$${}^{95}_{42}Mo \qquad {}^{139}_{57}La$$
nuclee stabile

Fig. 5.16. Distribuția procentuală a nucleelor – fragmente nucleare, în funcție de numărul de masă *A*.

Nucleele obținute prin fisiune sunt neutrono-excedentare și, ca urmare, sunt β^- radioactive, tinzând prin dezintegrări β^- succesive a unor nuclee intermediare spre starea de stabilitate β .

Energia degajată în dezintegrarea β^- și energia radiațiilor γ întârziate ce însoțesc dezintegrarea β^- ($E_{\beta^-+\gamma}=13$ MeV) se transformă tot în căldură.

5.5.2. Reacția în Ianț. Masa critică

Reacția de fisiune stimulată pentru nucleele izotopului $^{235}_{92}$ U, a cărei energie de reacție este considerabilă ($\approx 200 \text{ MeV}$), prezintă o mare importanță energetică. Una dintre condițiile de funcționare pentru reactorul energetic, având drept combustibil $^{235}_{92}$ U, este ca reacția de fisiune să se autoîntrețină. Ea poate fi îndeplinită dacă se utilizează neutronii proveniți din procesele de fisiune ca inițiatori ai unor noi procese de fisiune, adică să aibă loc o "*reacție în lanț*". Pentru aceasta este necesară încetinirea (termalizarea) neutronilor, deoarece probabilitatea de captură a neutronilor de către nucleele de $^{235}_{92}$ U este cu atât mai

mare cu cât viteza lor e mai mică. Pentru termalizarea neutronilor se utilizează un material *moderator* format din nuclee ușoare care preiau prin ciocniri elastice o parte din energia cinetică a neutronilor și care – practic – nu absorb neutroni. Ca moderatori se utilizează apa grea (D₂O), apa, grafitul sau beriliul. Pentru ca reacția în lanț să poată continua este necesar ca neutronii să nu se piardă prin procese de captură fără fisiune cum ar fi reacția:

$${}_{0}^{1}n + {}_{92}^{238}\mathrm{U} \rightarrow {}_{92}^{239}\mathrm{U} + \gamma,$$

²³⁸U fiind component majoritar în reactoarele cu uraniu natural, ²³⁵U fiind prezent 0,7%. Neutronii pot fi captați și de alte nuclee. Ca atare, întreținerea reacției în lanț se poate face numai când cantitatea combustibilului de uraniu fisionabil ²³⁵U este suficient de mare. Cantitatea de material fisionabil la care reactia de fisiune se autoîntreține se numește *masă critică*. Când cantitatea de material fisionabil este mai mică decât masa critică, neutronii se pot pierde în procese de absorbție sau ies din zona combustibilului înainte de a întâlni și deci fisiona un alt nucleu de ²³⁵U. Îndeplinirea condiției de masă critică pentru autoîntreținerea unei reacții în lanț stabilizată la un nivel de putere optimă în mediul fisionabil înseamnă – deci – că numărul de neutroni generați depășește, cu o valoare controlată, pe cei pierduți pentru actul de fisiune. La reactoarele nucleare barele de control formate din materiale neutro-absorbabile (Cd, B) introduse mai mult sau mai putin în zona activă (cu masă critică) controlează reacția în lanț, staționară, adică de aceeași intensitate, corespunzătoare unui nivel optim a puterii disipate. Când cantitatea de combustibil nuclear este mai mare decât masa critică, reacția în lanț este divergentă, putând atinge un caracter explozibil, ca în cazul bombei atomice (sau nucleare).

Înainte de explozie, bomba atomică are încărcătura de combustibil împărțită în două sau mai multe părți, fiecare în cantitate mai mică decât masa critică. Un detonator le aduce brusc în contact, ansamblul de combustibil depășește masa critică și – în regim supracritic – în câteva microsecunde se ajunge la explozie. Bomba nucleară echivalentă cu 20000 t trinitrotoluen este denumită *bombă convențională* cu fisiune.

Energia nucleară produsă prin fisiune mai poate fi folosită pentru desalinizarea apei de mare, pentru dezvoltarea de noi tehnologii în procesele chimice, pentru o exploatare mai eficientă a unor lucrări de excavație de mare volum, folosind caracteristica explozivă a reacției de fisiune.

În stadiul actual al tehnologiei, înțeleasă ca știință aplicată, ținând seama de necesitatea mereu crescândă de energie, nucleul atomic este singura sursă care să înlocuiască combustibilii fosili (de exemplu, în Franța, 90% din energia utilizabilă în circuitul economic este furnizată de centralele nucleare-electrice).

5.5.3. Reactorul nuclear

Pentru a putea descrie reactorul nuclear trebuie, înainte de toate, să definim sistemul din care acesta face parte și care sunt particularitățile lui comparativ cu sistemele clasice de producere a energiei electrice. Astfel, centrala nucleară electrică (CNE) se definește ca un ansamblu de instalații și construcții reunite în scopul producerii de energie electrică sau, simultan, de energie electrică și căldură prin utilizarea energiei nucleare. Clasificarea CNE se poate face după:

- Modul cum transformă energia nucleară în energie electrică:

- a) în trei faze succesive: energia nucleară în căldură în reactorul nuclear; căldura în energie mecanică în turbinele cu abur sau cu gaze; energia mecanică în energie electrică în generatorul electric.
- b) În două faze: energia nucleară în căldură în reactorul nuclear; căldura în energie electrică în generatoare magnetohidrodinamice și termoelemente.
- c) Transformarea directă a energiei nucleare în energie electrică cu ajutorul bateriilor nucleare.

Energia livrată consumatorilor:

- a) CNE ce furnizează numai energie electrică, echipate cu turbine cu abur în condensație sau turbine cu gaze.
 - b) CNE de termoficare, ce livrează simultan energie electrică și agent termic.

- Caracteristicile reactorului:

- a) felul reacției nucleare din reactor: CNE cu reactoare de fisiune și CNE cu reactoare de fuziune (aflate în studiu);
- b) energia neutronilor care provoacă fisiunile: CNE cu reactoare rapide (neutronii cu energii în apropierea valorii de 0,1 MeV); CNE cu reactoare termice (neutronii cu energii în apropierea valorii de 0,0256 eV);
 - c) structura zonei active: CNE cu reactoare eterogene, în care combustibilul

este dispus separat de moderator, sub forma de elemente combustibile, sau omogene, în care combustibilul este amestecat intim și uniform sub formă de soluție sau suspensie cu moderatorul, care poate avea și el un rol de agent termic (fig. 5.17).

 $Reactorul\ nuclear^1\ reprezintă\ un\ ansamblu\ de$

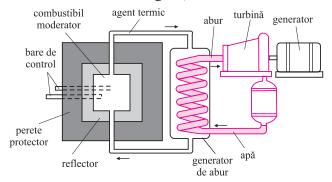


Fig. 5.17. Schema unei centrale nucleare.

instalații din CNE în care se desfășoară controlat procesul de fisiune în lanț, ca urmare a existenței combustibilului nuclear având o anumită masă critică, precum și a altor materiale.

¹ Primul reactor nuclear experimental a fost construit de Enrico Fermi (Premiul Nobel, 1938) în anul 1942, sub tribunele stadionului Universității din Chicago.

Reactorul este *termic*, când neutronii rapizi produși la fisiunea nucleelor sunt încetiniți de către moderatorul format din elementele ușoare, sau *rapid*, când, în absența moderatorului, neutronii nu mai sunt încetiniți.

Pentru reducerea scăpării de neutroni în afara reactorului acesta este prevăzut cu un strat periferic protector-reflector.

Neutronii proveniți din fisiuni se moderează de la energia de 2 MeV la energii termice fără a se produce în acest proces de termalizare fisiuni adiționale apreciabile.

Căldura produsă în reactorul nuclear este evacuată cu ajutorul agentului de răcire şi transferată ciclului energetic fie direct, fie prin intermediul generatorului de abur.

Producerea căldurii în reactorul nuclear

Căldura se produce în principal în combustibilul nuclear, iar o parte mai redusă în elementele de structură ale zonei active, în moderator, în reflector, în elementele de protecție – datorită neutronilor şi fotonilor γ, ultimii producând căldură şi în elementele din afara vasului reactorului. Se apreciază că energia produsă la fisiunea unui nucleu de uraniu se localizează astfel: 90% în combustibilul nuclear, 4% în moderator, 5% aferentă particulelor neutrino, 1% în celelalte materiale ale reactorului.

Combustibilul nuclear

Sub denumirea de *combustibil nuclear* se înțeleg materialele care conțin izotopi fisionabili – cum sunt $^{233}_{92}$ U, $^{239}_{94}$ Pu și $^{235}_{92}$ U, folosite în reactoarele nucleare pentru producerea reacțiilor de fisiune în lanț, deci a căldurii.

Izotopii fisionabili $^{233}_{92}$ U și $^{239}_{94}$ Pu se pot obține în procesul de iradiere din reactorul nuclear, din izotopi ca $^{232}_{90}$ Th respectiv $^{238}_{92}$ U, denumite *materiale fertile*.

Întrucât elementele care conțin izotopi fisionabili sau fertili nu au, în stare de metal pur, proprietăți corespunzătoare condițiilor din reactorul nuclear, aceste elemente se folosesc în combinație cu alte elemente (zircon, titan, molibden, aluminiu), care permit să se asigure îmbunătățirea caracteristicilor mecanice, termice și de rezistentă la coroziune și la iradieri.

Pentru o înțelegere mai bună și completă a celor prezentate mai sus se analizează, spre exemplificare, conceptul CANDU 600–PHWR prezent în țara noastră prin CNE Cernavodă.

Conceptul CANDU

Prima centrală nucleară electrică din România, în funcțiune la Cernavodă, este realizată după conceptul **CANDU 600–PHWR (CANadian Deutrium Uranium 600 – Pressurized Heavy Water Reactor),** are putere electrică de 700 MW și asigură 10% din necesarul de energie la nivel national.

Trăsăturile definitorii ale acestui concept sunt date de reactorul cu tuburi sub presiune având drept combustibil uraniu natural și moderator apa grea (D_2O) ,

încărcarea combustibilului făcându-se semicontinuu, în sarcină, fără oprirea reactorului nuclear.

Față de alte tipuri de CNE, conceptul CANDU prezintă o serie de avantaje, printre cele mai importante fiind folosirea uraniului natural (al cărui preț este scăzut), încărcarea în sarcină și asigurarea unei securități nucleare sporite.

Prin securitatea nucleară se înțelege ansamblul de măsuri tehnice și organizatorice destinate să asigure funcționarea instalațiilor nucleare în condiții de siguranță, să prevină și să limiteze deteriorarea echipamentelor și să ofere protecție personalului ocupat profesional, populației, mediului înconjurător și bunurilor materiale împotriva iradierii sau contaminării radioactive.

Conceptul CANDU are la bază strategia de "apărare în adâncime", care constă din conceperea unui sistem de bariere fizice în calea emisiunilor radioactive. Pentru fiecare dintre acestea există mai multe niveluri de apărare împotriva evenimentelor care ar putea afecta integritatea fiecărei bariere fizice și anume:

- 1) pastila de dioxid de uraniu reține cea mai mare parte a produșilor radioactivi de fisiune solizi, chiar la temperaturi înalte (factorul de reținere este 99%);
- 2) teaca elementului combustibil reține produși de fisiune volatili, gazele nobile și izotopii iodului ce difuzează din pastilele de combustibil;
- 3) sistemul primar de transport al căldurii reține produșii de fisiune care ar putea scăpa ca urmare a defectării tecii;
- 4) anvelopa reține produșii radioactivi în cazul avarierii tecii și sistemului primar;
- 5) "zona de excludere", zona cu rază de circa 1 km în jurul reactorului unde nu sunt permise activități umane permanente nelegate de exploatarea CNE asigură o diluție atmosferică a oricăror eliberări de radioactivitate evitându-se, astfel, expuneri nepermise ale populației.

În componența unei CNE tip CANDU 600-PHWR intră un număr de circuite majore, care, împreună cu circuitele auxiliare aferente, realizează transformarea energiei nucleare în energie electrică.

Circuitele majore ale CNE CANDU 600-PHWR sunt:

- circuitul primar de transport al căldurii;
- circuitul de abur și apă de alimentare;
- circuitul de apă de răcire la condensator;
- circuitul moderatorului;
- circuitul de combustibil.

Prin circuitul primar de transport al căldurii circulă apă grea sub presiune (agentul primar), care trece prin canalele de combustibil din reactorul nuclear preluând căldura degajată în urma fisiunii nucleare de tipul:

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{92}^{236}U^* \rightarrow {}_{56}^{144}Ba + {}_{36}^{80}Kr + {}_{30}^{1}n$$

a uraniului natural ²³⁵U. Căldura primită de agentul primar este apoi cedată în cei

4 generatori de abur apei de alimentare (agentul secundar) care se transformă în abur saturat. Circulația agentului secundar se face cu ajutorul celor 4 pompe primare.

Aburul saturat din generatorii de abur se destinde în turbină, care pune în funcțiune generatorul de curent.

Condensarea aburului destins se face folosind apă de răcire din Canalul Dunăre-Marea Neagră, aceasta constituind agentul celui de-al treilea circuit major al centralei.

Prin circuitul moderatorului circulă apă grea cu presiune și temperatură scăzută, rolul acesteia fiind de a asigura agentul moderator, necesar întreținerii reacției de fisiune din reactorul nuclear, la parametrii corespunzători. Echipamentele majore ale acestui circuit sunt două schimbătoare de căldură și două pompe de circulație.

Amplasarea acestor circuite și a celor auxiliare se prezintă schematic în figura 5.18, care cuprinde și traseul energetic reactor nuclear, schimbător de căldură (generator de abur), turbină cu abur, alternator (generator electric) → consumator.

Principalii parametri ai reactorului CNE CANDU 600-PHWR de la Cernavodă sunt:

- reactor orizontal cu 380 tuburi de presiune; combustibil:
- pastile sinterizate de UO_2 fabricate la Pitești, grupate în fascicule de combustibil de câte 37 elemente;
 - cantitate combustibil: 93 t UO₂;
 - circuitul primar
 - temperatură intrare/ieșire reactor: 266°C / 310°C;
 - presiune intrare/ieşire reactor: 11,13 MPa / 9,89 MPa;

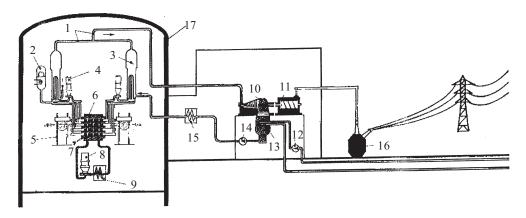


Fig. 5.18. CNE – Cernavodă: Schema centralei nucleare electrice: 1. Conducte de abur; 2. Presurizor; 3. Generator de abur (GA); 4. Pompe de circuit primar; 5. MID (mașina încărcat-descărcat combustibil); 6. Reactor; 7. Combustibil; 8. Pompe circuit moderator; 9. Schimbător de căldură; 10. Turbogenerator; 11. Generator electric; 12. Pompe răcire condensator; 13. Condensator; 14. Pompe apă de alimentare; 15. Preîncălzitor; 16. Transformator; 17. Anvelopa reactorului.

circuit secundar

- fluid: abur;

- presiune/temperatură la intrarea în CIP: 4,5 MPa/260°C;

- debit: 3758,152 t/h;

- debit apă circulație la condensator: 46 m³/s;

- vid la condensator: 4 kPa.

Sistemul de transport al căldurii

Sistemul primar de transport al căldurii realizează circulația sub presiune a apei grele (agentul primar de răcire) prin canalele de combustibil, în scopul evacuării căldurii rezultate din fisiunea atomilor de uraniu ²³⁵U. Căldura transportată de agentul de răcire este transferată apei (agentul secundar) în generatorii de abur, aceasta transformându-se în aburul saturat care pune în mișcare turbina.

Pe lângă acest rol major, sistemul primar de transport al căldurii mai asigură:

- răcirea reactorului nuclear în orice condiții, chiar şi în cazul pierderii surselor de alimentare cu energie electrică;
 - protecția la suprapresiune a sistemului și a componentelor acestuia;
 - reducerea la minimum a pierderilor de apă grea.

Din motive de securitate – pentru a nu se pierde întreg inventarul de agent primar de răcire –, sistemul primar de transport al căldurii a fost conceput sub forma a două bucle independente, fiecare buclă asigurând răcirea a 190 canale de combustibil din reactorul nuclear (deci jumătate din numărul total de canale de combustibil), realizându-se astfel și o curgere bidirecțională în interiorul reactorului nuclear.

Sistemul moderator

Pentru reactorul CANDU, moderatorul este apa grea (D₂O).

Sistemul moderatorului are următoarele funcții:

- moderează (încetinește) neutronii rapizi de fisiune;
- evacuează căldura degajată în cadrul procesului de moderare;
- serveşte ca mediu de dispersie a substanţelor chimice introduse pentru reglarea reactivității în zona activă;
- evacuează căldura degajată de combustibil în cazul LOCA (Loss of Coolant
 Accident pierderea agentului de răcire), concomitent cu indisponibilitatea
 sistemului de răcire la avarie a zonei active;
 - menține o temperatură constantă de 60÷80°C a moderatorului reactor.

Instrumente de măsură

Aceste instrumente permit controlul continuu al mărimilor fizice care caracterizează comportamentul unui reactor nuclear (temperatura, concentrația neutronilor, radioactivitatea, presiunea și debitul moderatorului lichid etc.) și a CNE.

5.6. Fuziunea nucleară

5.6.1. Fuziunea

Fuziunea nucleară reprezintă reacția nucleară de sinteză a unui nucleu mai greu și mai stabil, din două nuclee ușoare (A < 20). Reacția este însoțită de eliberarea de energie, egală cu diferența dintre energia de legătură a nucleului rezultat și cea a nucleelor ușoare, de ordinul MeV-ilor. A fost descoperită între anii 1920–1925 la bombardarea gheții grele (D_2O) cu un fascicul de deuteroni (2_1D) accelerați. Nucleele ușoare care pot fuziona sunt cele ale izotopilor hidrogenului – protonul (1_1H), deuteronul (2_1D) și tritiul (3_1T), precum și ale unor izotopi instabili ai heliului (3_2He), carbonului, azotului. Câteva exemple de reacții de fuziune:

$${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{1}^{3}T + {}_{1}^{1}H + 4 \text{ MeV};$$

$${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{2}^{3}\text{He} + {}_{0}^{1}n + 3,25 \text{ MeV};$$

$${}_{1}^{2}D + {}_{1}^{3}T \rightarrow {}_{2}^{4}\text{He} + {}_{0}^{1}n + 17,6 \text{ MeV};$$

$${}_{1}^{2}D + {}_{2}^{3}\text{He} \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{1}H + 18,3 \text{ MeV}.$$

Pentru producerea unei reacții de fuziune, nucleele, fiind încărcate pozitiv, trebuie să învingă forțele de respingere electrostatică – care sunt cu atât mai mari cu cât numărul lor atomic A este mai mare – și să pătrundă în raza de acțiune (10^{-15} m) a forțelor nucleare de atracție care mențin nucleonii nucleului în cadrul acestuia. Pentru aceasta, nucleele trebuie să aibă o energie cinetică inițială mare, care poate fi obținută prin creșterea temperaturii la valori mari, $T \approx 5 \cdot 10^9 \text{ K}$ – la care substanța se află în starea de plasmă, adică de ionizare, de unde și numele de reacții termonucleare. Temperatura de amorsare a reacției $^2_1D - ^2_1D$ este $4 \cdot 10^8$ K, iar pentru reacția $^2_1D - ^3_1T$ este de $4,5 \cdot 10^7$ K.

Reacțiile de fuziune constituie sursa energetică a stelelor de tipul Soarelui. În cazul Soarelui, în care hidrogenul este în proporție de 70%, heliul 29% și alte elemente 1%, reacția generală de fuziune este: $4_1^1\text{H} \rightarrow {}_2^4\text{He} + 2e^+ + 2v$. Există mai multe cicluri de reacție care pot duce la formarea unui nucleu de ${}_2^4\text{He}$ din patru protoni, în funcție de temperatura plasmei. În interiorul stelelor mai reci cum este, de exemplu, Soarele, se produce ciclul proton-proton, propus în anul 1938 de fizicianul american de origine germană H. A. Bethe:

$$2_{1}^{1}H + 2_{1}^{1}H \rightarrow 2_{1}^{2}D + 2e^{+} + 2v,$$

 $2_{1}^{2}D + 2_{1}^{1}H \rightarrow 2_{2}^{3}He + \gamma,$
 ${}_{2}^{3}He + {}_{3}^{3}He \rightarrow 2_{1}^{1}H + {}_{4}^{4}He.$

În acest ciclu, la formarea unui nucleu de heliu din patru protoni se degajă energia de 26,75 MeV, astfel că la sinteza corespunzătoare a 1 g de nuclee de hidrogen se obțin 175 MWh, în comparație cu 22,78 MWh la fisiunea unui gram de uraniu ²³⁵₉₂U; de 7,68 ori este mai mare energia de fuziune decât cea eliberată la fisiune, combustibilii fiind diferiți.

Deși procesele de fuziune durează în Soare de cel puţin două miliarde de ani, în fiecare secundă consumându-se 10 milioane tone de hidrogen, până în prezent s-a transformat în heliu numai 2% dim masa Soarelui, ceea ce arată că acesta va mai radia cu aceeași intensitate încă 100 de miliarde de ani.

Existența pe Pământ a anumitor izotopi cum ar fi ²₁D, ³₂He, ⁵₃Li, ⁸₄Be ș.a. este atribuită unor procese termonucleare petrecute, în condiții fizice adecvate, cu mult timp în urmă.

Astfel, deuteriul ar fi apărut în urma reacției: ${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}D + e^{+} + v$; ${}_{3}^{5}Li$ ca urmare a reacției: ${}_{2}^{4}He + {}_{1}^{1}H \rightarrow {}_{3}^{5}Li + v$; ${}_{4}^{8}Be$ din reacția ${}_{2}^{4}He + X \rightarrow Y + \gamma$ (completați ca exercițiu, necunoscutele reacției).

5.6.2. Reactorul cu fuziune¹

Reactorul cu fuziune, considerat cel mai realizabil, folosește drept combustibil tritiul și deuteriul conform reacției:

$${}_{1}^{2}D + {}_{1}^{3}T \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + 17.6 \text{ MeV}.$$

Probabilitatea de producere a reacțiilor nucleare în urma ciocnirii atomilor este prea mică, de aceea se folosește o plasmă fierbinte stabilizată, complet ionizată, formată din atomi de deuteriu și tritiu. Pentru producerea fuziunii nucleelor D–D și D–T într-un reactor cu funcționare în regim optim este necesară îndeplinirea a trei condiții fundamentale: confinarea plasmei, randamentul reacțiilor de fuziune și a criteriului Lawson. Deoarece la un eventual contact cu pereții incintei plasma topește pereții, se impurifică și se răcește rapid, se impune izolarea (confinarea) de pereții instalației în care se formează. În acest scop, cea mai folosită este metoda capcanelor magnetice externe. Câmpul magnetic al cărui spectru de linii este format tangențial cu plasma determină o compresie a

plasmei, exercitând o presiune magnetică $p = \frac{B^2}{2\mu_0}$; B este inducția câmpului magnetic, de ordinul 1–2T; μ_0 ÷ este permeabilitatea vidului. În regim de echilibru, reactorul trebuie să injecteze același număr de particule, iar energia degajată în unitatea de timp trebuie să fie mai mare decât energia fluxului de particule pierdute în unitatea de timp. Raportul:

$$\eta = \frac{P_r + P_p}{P_0 + P_r + P_p},$$
(5.41)

unde P_0 , $P_r + P_p$ sunt puterea energiei nucleare eliberate, a fluxului de radiație și, respectiv, a fluxului de particule pierdute, definește randamentul η al reacțiilor nucleare de fuziune. Dacă prin n definim concentrația particulelor, iar prin τ – timpul mediu de menținere a particulelor deuteriu și tritiu în reactor și dacă produsul $n\tau$ este mai mare decât valoarea unei funcții critice de temperatură f(T) pentru ca reactorul să fie un generator de energie și când randamentul este $\eta = 1/3$, reactorul funcționează în regim optimal (criteriul lui Lawson).

¹ Vezi şi http://science.howstuffworks.com/fusion-reactor.htm.

Astfel, în condițiile de reactor de laborator:

- pentru reactia D–D: $n\tau \ge 10^{15}$ cm⁻³s, $T \approx 2.10^9$ K;
- pentru reactia D–T: $n\tau \ge 10^{14}$ cm⁻³s,
- $T \approx 2 \cdot 10^8 \text{ K}.$

Așadar, pentru obținerea fuziunii este necesară formarea unei plasme, în sistem gaz total ionizat, confinată, cât mai densă, stabilă un timp cât mai îndelungat și la o temperatură cât mai înaltă.

În figura 5.19 se prezintă schematic alcătuirea unui posibil reactor de fuziune D+T. Mantaua de litiu lichid are rol și de fabricare a tritiului, conform reacției ${}^1n + {}^7_3\text{Li} \rightarrow {}^4_2\text{He} + {}^3_1\text{H}$ și de moderator. Neutronii reacției cu litiu sunt neutroni de mare energie proveniți din reacția ${}^2_1\text{D} + {}^3_1\text{T} \rightarrow {}^4_2\text{He} + {}^1_0n + 17,6$ MeV care are loc în plasma (D+T) provocată prin evaporarea (microexplozia) picăturii (D+T) cu raza de 5 mm realizată prin acțiunea focalizată a radiațiilor laser de foarte mare putere. Litiul preia energia rezultată din reacțiile de fuziune, transportând căldura la sistemele clasice de conversie a energiei termice în energie electrică. Curentul din bobinajul exterior participă la producerea câmpului capcanei magnetice care, împreună cu radiația laser, contribuie la confinarea plasmei din reactor.

Litiul și tritiul se găsesc - însă - în cantități foarte mici în natură.

Din punct de vedere al rezervelor de combustibil termonuclear, realizarea unui reactor (d+d) ar fi o soluție ideală. În acest caz un metru cub de apă ar constitui echivalentul în energie a 300 tone de cărbune sau $2,08 \cdot 10^5$ l de petrol. Problema energiei ar fi rezolvată, dar, așa cum s-a arătat mai înainte, parametrii de realizare a reacției termonucleare ${}_{1}^{2}D + {}_{1}^{2}D$ sunt prea mari: $n\tau \ge 10^{15}$ cm⁻³s, $T > 2 \cdot 10^{9}$ K¹.

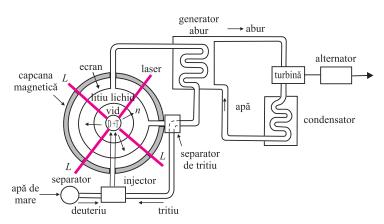


Fig. 5.12. Un tip de reactor de fuziune.

¹ Una dintre valorile cele mai ridicate de temperatură creată de om este cea de 520 milioane grade Celsius, adică de 30 de ori mai mare decât în centrul Soarelui. Ea a fost realizată în anul 1994 în reactorul de testare pentru fuziune nucleară, tip Tokamak, de la laboratorul de Fizică a Plasmei a Universității Princeton (N.Y. SUA).

Importantă este și ideea de "reactor hibrid", adică un reactor de fuziune înconjurat cu o manta de combustibil care să constituie un reactor de fisiune iar energia rezultată în mantaua reactorului să poată fi folosită pentru menținerea reacțiilor termonucleare controlate. Elementul de control al acestui proces este câmpul magnetic confinator. Se pare – afirmă specialiștii – că reactorul hibrid are cele mai multe șanse să devină un reactor de fuziune comercial, criteriul Lawson fiind favorabil acestei variante.

Reacții de fuziune pe Pământ au fost realizate și în cadrul exploziei bombelor termonucleare.

Utilizând o bombă atomică obișnuită cu $^{235}_{92}$ U, prin fisiunea nucleelor combustibilului, la locul exploziei temperatura se ridică în câteva zeci de secunde la sute de miliarde de grade și face posibilă reacția de fuziune cu eliberarea unei energii și mai mari. Încărcătura unei bombe cu hidrogen, denumită și bombă termonucleară, este formată din deuterură de litiu (DLi) solidă, care la temperatura exploziei nucleare de fisiune, produce reacțiile:

$${}^{6}_{3}\text{Li} + {}^{2}_{1}\text{D} \rightarrow {}^{2}_{2}^{4}\text{He},$$

$${}^{6}_{3}\text{Li} + {}^{1}_{0}n \rightarrow {}^{4}_{2}\text{He} + {}^{3}_{1}\text{T};$$

$${}^{6}_{3}\text{Li} + {}^{3}_{1}\text{T} \rightarrow {}^{2}_{2}^{4}\text{He} + {}^{1}_{0}n,$$

cu o degajare de energie cu trei patru ordine de mărime mai mare decât aceea a unei bombe convenționale cu fisiune!

*

Se speră că în viitorul apropiat omul va fi beneficiarul energiei reacțiilor termonucleare controlate (ultimul tip de instalație pentru plasma termonucleară are produsul $n\tau \approx 3 \cdot 10^{13}$ cm⁻³s, $T \approx 10^7$ K). Printre aplicațiile potențiale ale reacțiilor de fuziune pot fi menționate obținerea de energie electrică, obținerea de combustibili nucleari, desalinizarea apelor mărilor pentru ținuturi deșertice, încălzirea industrială și urbană, purificarea aerului etc.

5.7. Acceleratoare de particule*

Prin acceleratoare de particule se înțeleg instalațiile complexe destinate accelerării unor particule cu sarcină electrică $(e, p, \alpha, d \dots ioni grei)$ sub acțiunea unor câmpuri electrice și magnetice, până la energii cinetice foarte mari. Sunt utilizate la studiul particulelor elementare și al structurii nucleului atomic, în alte domenii ale fizicii și tehnologiilor actuale, precum și în medicină.

Acceleratoarele se pot clasifica și după forma traiectoriei, rectilinie sau curbilinie, descrise de particule în procesul de accelerare.

5.7.1. Acceleratorul liniar cu electroni de accelerare (LINAC)*

Acest tip de accelerator constă dintr-un șir de electrozi metalici de forma unor cămăși cilindrice, coaxiali, situați într-un tub vidat, conectați la un generator de

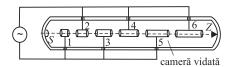


Fig. 5.20. Schemă simplificată a unui accelerator liniar.

înaltă frecvență, ca în figura 5.20. În intervalul spațial d ce separă doi cilindri consecutivi (interval accelerator) apare un câmp electric de înaltă frecvență a

cărui intensitate este $E_z = \frac{U_0}{d} \cos \omega t$, unde

 $U_0\cos\omega t$ reprezintă tensiunea dintre cilindri. Particulele emise de sursa S intră în cilindrul 1 deplasându-se mai departe și sunt accelerate între cilindrii 1 și 2. Frecvența generatorului, f, este astfel aleasă astfel încât, în timp ce ionii parcurg cilindrul 2, tensiunea între cilindri să-și schimbe semnul. În acest fel, între cilindrii 2 și 3 ionii sunt din nou accelerați. Timpul Δt în care particulele parcurg

fiecare cilindru trebuie să fie $\Delta t = \frac{T}{2} = \frac{1}{2f}$ și se numește *condiția de sincronism*.

Crescând viteza particulei prin accelerare, crește și lungimea parcursă de aceasta în timpul T/2. Lungimea cilindrilor trebuie să fie din ce în ce mai mare.

Știind că $\frac{mv_n^2}{2} = neU_0$, lungimea cilindrului L_n parcursă într-o jumătate de perioadă este egală cu:

$$L_n = v_n \frac{T}{2} = v_n \frac{1}{2f} = \frac{1}{f} \sqrt{\frac{neU_0}{2m}},$$
 (5.42)

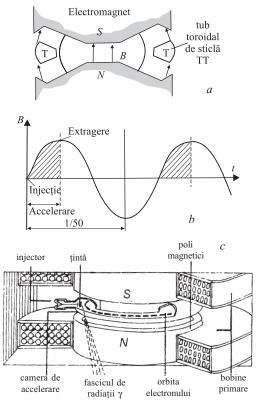
în ipoteza că sarcina particulei este egală cu sarcina elementară e. Dar

 $L_1=\frac{1}{f}\sqrt{\frac{eU_0}{2m}}$, de unde $L_n=\sqrt{n}$ L_1 , relație ce limitează realizarea unui număr n mare de intervale de accelerare și, ca atare, și a energiei cinetice finale nerelativiste $n\Delta E_c$, ΔE_c fiind creșterea de energie pentru fiecare interval de accelerare. Acest tip de accelerator poate accelera protonii și ionii grei până la circa 70 MeV și se folosește ca injector pentru acceleratoarele de energie foarte mare.

Pentru accelerarea electronilor, care ajung rapid la viteze comparabile cu viteza luminii în vid, sunt necesare frecvențe foarte mari (3 GHz) ale tensiunii de accelerare. De aceea, pentru accelerarea lor se folosesc *acceleratoarele cu undă progresivă*. Accelerarea electronilor se realizează continuu, prin acțiunea componentei longitudinale a vectorului intensitate electrică \vec{E} a unui câmp electromagnetic ce se propagă într-un ghid de undă de construcție specială. Viteza particulelor (nu numai electroni) este egală cu viteza de fază a undei, foarte apropiată de viteza luminii în vid.

Acceleratorul de la Universitatea din Stanford (SLAC¹) accelerează fasciculele de electroni până la energia cinetică de 40 GeV. Aceștia nu pot fi accelerați în aceeași măsură în acceleratoarele ciclice (unde la 500 MeV pierderea de energie prin radiație devine egală cu energia primită în procesul de accelerare).

¹ Stanford Linear Accelerator Center.


5.7.2. Betatronul*

Este un accelerator ciclic de inducție (electromagnetică) pentru electroni. Este utilizat pentru studiul reacțiilor nucleare, al obținerii de radiații γ și X, în radioterapie și defectoscopie nedestructivă. A fost construit în anul fizicianul 1940 de american D. W. Kerst. Betatronul poate fi considerat drept un transformator al cărui curent alternativ, pentru $t \in [0, T/$ 4] din circuitul primar, produce variația fluxului magnetic, deci aparitia unui curent electronic în circuitul secundar, care se deplasează sub acțiunea câmpului electric indus în interiorul unui tub toroidal (inelar) vidat (fig. 5.21 a, b, c).

Camera toroidală este prevăzută cu o sursă de electroni și o fereastră de foiță de mică, pentru extragerea electronilor accelerați. Din legea inducției electromagnetice:

$$e_i = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$
,

unde t.e.m. indusă este, prin definiție,

Fig. 5.21. a – Secțiune printr-un betatron. b – variația sinusoidală a inducției câmpului magnetic într-un betatron. c – Secțiune prin piesele polare ale electromagnetului unui betatron.

 $e_i = \oint \vec{E}_i \vec{\mathrm{d}l} = 2\pi r_0 E_i$, iar $\Phi = B_m \cdot \pi r_0^2$. Din relațiile de mai sus, unde am notat cu E_i intensitatea pe orbita electronică a câmpului electric indus (E_i este analogul intensității câmpului imprimat din sursele cu câmp imprimat – cele galvanice, de exemplu), r_0 – raza orbitei stabile, de echilibru –, iar \vec{B}_m inducția medie a câmpului magnetic normală pe suprafața de arie πr_0^2 a fluxului magnetic Φ , cu

viteză de variație $\frac{\mathrm{d}\Phi}{\mathrm{d}t}$ constantă, se obține:

$$E_i = -\frac{1}{2\pi r_0} \frac{d\Phi}{dt} = -\frac{\pi r_0^2}{2\pi r_0} \frac{dB_m}{dt} = -\frac{r_0}{2} \frac{dB_m}{dt}.$$

La o singură rotație pe orbita de lungime $2\pi r_0$ electronul își mărește energia cinetică cu $\Delta E_c = 2\pi r_0 e E_r$.

Pentru accelerarea electronului până la energii mari este necesar ca mișcarea acestuia să fie stabilă pe orbita de rază r_0 . Condiția de stabilitate se obține cu un calcul relativ simplu, după cum urmează.

Ecuația de mișcare a electronului pe orbita de accelerare este:

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -eE_i = \frac{e}{2\pi r_0} \frac{\mathrm{d}\Phi}{\mathrm{d}t} .$$

Prin integrare, considerând că la momentul inițial t = 0 avem v = 0 și B = 0,

se obține: $p = \frac{e}{2\pi r_0} \Phi$. Din expresia impulsului particulei pe orbita giromagnetică,

 $p = er_0 B$, se poate scrie expresia pentru raza orbitei sub forma:

$$r_0 = \frac{p}{eB} = \frac{1}{2\pi} \cdot \frac{\Phi}{r_0 B} = \text{const.}$$

Cum $\Phi = \pi r_0 B_m$, se ajunge la relația de stabilitate ($r_0 = \text{const.}$) a orbitei de accelerare giromagnetică și poartă numele de *condiția lui Wideröe* (se pronunță așa cum se scrie):

$$B_{r_0}(t) = \frac{1}{2}B_m(t),$$

adică: inducția câmpului magnetic în punctele orbitei trebuie să fie, în fiecare moment, numai jumătate din inducția magnetică medie pe aria orbitei.

Aceasta impune o anumită distribuție a spectrului liniilor de câmp și, ca atare, o construcție (formă) specială a profilului polilor electromagnetului betatronic (terminațiile "tronic", "on", se referă, în general, la aparatele și dispozitivele în care fenomenul specific al funcționării acestora este de natură electronică: tun electronic, orticon, vidicon (videocaptoare), supertrinitron – tub cinescop Sony, etc.).

Prin respectarea condiției Wideröe, în betatron, un singur câmp magnetic, variabil în timp realizează atât accelerarea fasciculului de electroni cât și menținerea lui pe o orbită circulară stabilă. Vectorul inducție a câmpului magnetic este perpendicular pe orbita de accelerare și – reamintim – variază de la valoarea zero la o valoare maximă atinsă după primul sfert de perioadă de la cuplare, $B \in (0, B_0)$, unde $B_0 = 0.5 \div 0.6$ T.

Pentru a calcula energia cinetică maximă se folosește expresia relativistă a

energiei cinetice normate η funcție de impulsul normat ξ , $\eta = (1 + \xi^2)^{\frac{1}{2}} - 1$, adică

$$E_c = m_0 c^2 \left[\sqrt{1 + \left(\frac{er_0 B_0}{m_0 c}\right)^2} - 1 \right]. \tag{5.43}$$

Întrucât impulsul electronului betatronic accelerat este mult mai mare decât impulsul de repaus al electronului, rezultă expresia energiei cinetice maxime sub forma:

$$E_c = er_0 B_0 c. ag{5.44}$$

În scopul obținerii unei radiații γ foarte "dure", adică de mare energie, fasciculul pulsatoriu de electroni este îndreptat, după accelerare, asupra unei ținte metalice, situată în interiorul unei camere vidate, în care este frânat brusc.

Așadar, betatronul poate fi comparat cu un transformator obișnuit, cu secundarul înlocuit de electronii din tubul toroidal vidat. Electronii sunt accelerați de câmpul electric indus, produs de câmpul magnetic variabil, și în același timp sunt obligați să se miște pe o orbită circulară, datorită existenței câmpului magnetic.

Problemă rezolvată

Într-un betatron de 200 MeV, electronii sunt accelerați pe o orbită de echilibru de rază $r_0 = 1,5$ m. Energia de injecție este $E_{ci} = 1$ MeV.

- a) Care este valoarea inducției magnetice la începutul și la sfârșitul procesului de accelerare?
- b) Considerând că variația inducției magnetice se face liniar în 0,15 s, ce energie primește particula la fiecare rotație?
 - c) Câte rotații face particula și care este lungimea drumului parcurs?
- d) Să se calculeze impulsul electronului la sfârșitul accelerării, exprimat în unitatea tolerată MeV/c.

a)
$$r_0 = \frac{mv}{eB} = \frac{p}{eB}$$
, adică $p = eBr_0$. Din tabelul 1.1 impulsul normat ξ în funcție de energia

cinetică normată
$$\eta$$
 este $\xi = (\eta^2 + 2\eta)^{1/2}$; $\frac{eBr_0}{m_0c} = \frac{\sqrt{E_c^2 + 2E_0E_c}}{m_0c^2}$, unde $E_0 = m_0c^2$.

$$B = \frac{\sqrt{E_c^2 + 2E_0E_c}}{er_0c}$$
, de unde $B_i = 0,0031\text{T}$ (există o magnetizare remanentă a miezului

feromagnetic al electromagnetului) și $B_f = 0.44$ T.

b) În ipoteza variației liniare a inducției câmpului magnetic, la fiecare rotație electronii extrag din câmpul electric indus energia:

$$\Delta E_{i \text{ rot}} = 2\pi r_0 e e_i = \pi r_0 e \frac{dB}{dt} = \pi r_0 e \frac{B_f - B_i}{\Delta t} = 20.8 \text{ eV/rot.}$$

- c) Numărul de rotații este: $n=\frac{E_{cf}-E_{ci}}{\Delta E_{i\,rot}}\approx 9,55\cdot 10^6 \text{ rot, iar lungimea drumului}$ parcurs $L=2\pi r_0 n\approx 90.000 \text{ km.}$
- d) $p = eBr_0 = 10^{-19} \text{ N} \cdot \text{s} = 186,9 \text{ MeV/c}$. În extrem relativist, impulsul unei particule este $p \approx mc = E/c$, ceea ce permite introducerea unei unități arbitrare pentru impuls $1 \text{ eV/c} = 5,35 \cdot 10^{-28} \text{ N} \cdot \text{s}$. Această unitate și electron-voltul sunt folosite în tehnica accelerării particulelor, unități care nu fac parte din SI, dar prezintă avantaje în calculele directe.

5.7.3. Ciclotronul*

Fig. 5.22. Schema simplificată a ciclotronului.

Ciclotronul a fost inventat în anul 1932, de către fizicianul american Ernest Orlando Lawrence (1901–1958), laureat al premiului Nobel în anul 1939. Se compune (fig. 5.22) dintr-un sistem de doi electrozi cavitari în formă de jumătăți de cilindru plate, numite duanți. Sistemul este alimentat de un generator de tensiune alternativă, care permite alternarea polarității tensiunii $U_0(10^4-$ 10⁵ V) dintre cei doi electrozi duanți. Incinta vidată în care se află sistemul duant se află într-un câmp magnetic

uniform cu inducția \vec{B} (B = 1,5 ÷ 2T)

perpendiculară pe suprafața duanților. În ciclotron se accelerează ioni pozitivi. Se pot obține fascicule cu o intensitate de curent de 1 mA. Un ion din fascicul emis de sursa aflată în centru, între duanți, este accelerat în câmpul electric dintre duanți, traiectoria sa în interiorul duanților fiind circulară (datorită câmpului magnetic) și de rază din ce în ce mai mare.

Forța Lorentz, care determină traiectoria circulară, este o forță centripetă, deci:

$$\frac{mv^2}{R} = qvB, (5.45)$$

de unde rezultă că raza traiectoriei este:

$$R = \frac{mv}{qB} = \frac{p}{qB},\tag{5.46}$$

Variația cu viteza a masei m a ionului putând fi neglijată, energia cinetică E_c căpătată de acesta la sfârșitul unui ciclu de accelerare este dată de relația:

$$E_c = \frac{p^2}{2m}. ag{5.47}$$

Din relația 5.46 și 5.47 se obține explicit energia cinetică finală:

$$E_c = \frac{q^2 B^2 R_0^2}{2m},\tag{5.48}$$

unde R_0 este raza maximă a traiectoriei.

După un interval de timp Δt egal cu o jumătate de perioadă, $\frac{T}{2}$, ionul de masă m și sarcină q ajunge din nou în spațiul de accelerare.

$$\Delta t = \frac{T}{2} = \frac{\pi R}{v} = \frac{\pi m}{qB}. \tag{5.49}$$

Deoarece perioada de rotație T a ionului nu depinde de viteza cu care se mișcă, în fiecare duant ionul accelerat rămâne același interval de timp Δt . Dacă polaritatea electrică pe duanți se inversează tot în Δt , adică perioada de rotație T a ionului coincide cu perioada T_g a tensiunii U_0 generate de generatorul de alimentare, ionul va fi din nou accelerat. Astfel, condiția de rezonanță a ciclotronului este:

$$T = T_g = \frac{2\pi m}{qB} = \frac{1}{f}.$$
 (5.50)

Extracția particulelor se realizează prin deflexie electrostatică, cu ajutorul unui condensator plasat la capătul ultimei orbite, care produce un câmp radial de deviere.

E. O. Lawrence, împreună cu fratele său, John Lawrence, a dezvoltat aplicații ale radioizotopilor (izotopi care emit radiații de tip alfa (α) , beta (β) sau gamma (γ) produse prin bombardarea unor substanțe cu particule accelerate în ciclotron). A făcut astfel posibilă radioterapia cancerului și hipertiroidismului. A construit ciclotroane din ce în ce mai puternice, cu ajutorul cărora, în anul 1941, au fost generate artificial particule cosmice (mezoni), iar, mai târziu, antiparticule. Ciclotronul lui Lawrence este precursorul sincrotronului modern, care poate accelera protoni până la energii de milioane de MeV. În timpul războiului a realizat separarea uraniului 235, folosit la bomba atomică.

Energia cinetică a particulelor cu sarcină electrică accelerate în ciclotron nu poate atinge însă orice valoare, fiind limitată de efectele relativiste care fac ca sincronismul dintre trecerea particulei printre duanți și schimbarea polarității acestora să nu mai fie respectat. Într-adevăr, la vitezele mari, comparabile cu viteza luminii, obținute în urma accelerării, masa particulelor nu mai rămâne constantă și condiția de sincronism nu mai este îndeplinită.

Condiția de sincronism poate fi realizată, totuși, și pentru particule grele ce trebuie accelerate până la viteze destul de mari. Au fost astfel create noi instalații de accelerare – *sincrociclotroanele* sau *fazotroanele* – în care, pentru compensarea efectelor creșterii relativiste a masei particulelor, se procedează la variația periodică a frecvenței tensiunii de alimentare a duanților. S-au realizat, de asemenea, *sincrotroanele*, care funcționează pe baza variației periodice a câmpului magnetic în scopul compensării creșterii relativiste a masei, precum și *sincrofazotroanele* în care condiția de sincronism este realizată prin ambele metode.

Problemă rezolvată

În cazul unui ciclotron care accelerează deuteroni și care are inducția magnetică $B=1\mathrm{T}$, raza de extracție $R_0=0.5$ m și amplitudinea tensiunii alternative $U_0=40$ kV, să se calculeze care este (a) frecvența f a tensiunii alternative aplicate, (b) energia cinetică $E_c(R_0)$ a deuteronilor la ieșirea din ciclotron, (c) drumul L parcurs de deuteroni până la atingerea energiei cinetice maxime (considerând că energia lor la injectarea în ciclotron poate fi, evident, neglijată)? $(q=e=1,6\cdot10^{-19}\mathrm{C},\ m=3,3\cdot10^{-27}\mathrm{kg})$.

a)
$$f = \frac{eB}{2\pi m} = 7.7 \text{ MHz.}$$
; b) $E_c(R_0) = \frac{e^2 B^2 R_0^2}{2m} = 6.06 \text{ MeV.}$

c)
$$\Lambda(r) = \frac{E_c(r)}{2eU_0} = \frac{eB^2r^2}{4mU_0}$$
; $dA(r) = \frac{eB^2rdr}{2mU_0}$;

$$L = \int 2\pi r dN = \int_{0}^{R_0} \frac{\pi e B^2 r^2}{mU_0} dr = \frac{\pi e B^2 R_0^3}{3mU_0} = \frac{2\pi R_0 E_c(R_0)}{3eU_0} = 158,58 \text{ m}.$$

Probleme propuse

1. Dacă masa critică m pentru uraniu 235 este aproximată la 1 kg și, presupunând că întreaga cantitate de $^{235}_{92}$ U fisionează și cunoscând că energia degajată E_f la fisiunea unui nucleu este în jur de 200 MeV, să se calculeze energia eliberată E.

R: 8,2 · 10¹³J (indicație:
$$E = N_A \frac{m}{A} E_f$$
).

2. Care este temperatura cinetică corespunzătoare pentru ca două nuclee de deuteriu să se poată apropia până la o distanță $r = 3 \cdot 10^{-15}$ m pentru a forma un nucleu de heliu?

(Indicație:
$$\frac{1}{2}E_p = \frac{3}{2}kT$$
, $E_p = \frac{e^2}{4\pi\epsilon_0 r^2}$)

R:
$$T = 1.85 \cdot 10^9 \text{ K}.$$

3. Care este viteza protonilor la ieșirea din acceleratorul liniar, dacă intervalele de accelerare au fost în număr de 30 și tensiunea de accelerare a fost de 1 kV $(m_p = 1,67 \cdot 10^{-27} \text{ kg}, e = 1,6 \cdot 10^{-19} \text{ C})$? Dar energia lor cinetică?

R:
$$2,4 \cdot 10^6$$
 m/s; 30 keV.

4. La betatron, variația inducției magnetice *B* se alege în așa fel încât să aibă valoarea maximă la punctul de extrem a sinusoidei intensității curentului de alimentare a bobinelor primare. Este momentul când electronii fasciculului au atins energia maximă proiectată și trebuie extrași. Procesul de accelerare durează – deci – maximum un sfert de perioadă. Care este intervalul de succedare a pulsurilor de accelerare, dacă alimentarea se face de la rețeaua de 50 Hz?

R: 20 ms.

5. Dacă D⁺ se accelerează la 20 MeV, care va fi energia corespunzătoare N³⁺?

R: 160 MeV.

6. Care va fi viteza finală a ionului He²⁺ accelerat la 40 MeV?

R: $4.38 \cdot 10^7$ m/s.

- **7.** Un ciclotron care accelerează deuteroni (nucleele atomului de deuteriu, izotop al hidrogenului) are inducția de 1 T, raza duanților de 0,5 m și tensiunea de accelerare de 40 kV. Să se calculeze: a) frecvența tensiunii aplicate;
 - b) energia deuteronilor la ieșirea din ciclon.

R: a) 7,7 MHz; b) 5,06 MeV.

8. Care este energia în MeV/nucleon pentru un fascicul de protoni accelerat la 10 MeV? Dar în cazul unui fascicul de particule α accelerat la 40 MeV?

R: 10 MeV/nucleon.

9. Două particule nucleare, un proton și o particulă α , sunt accelerate sub aceeași tensiune U, viteza lor inițială fiind neglijabilă. După procesul de accelerare, particulele pătrund perpendicular într-un câmp magnetic uniform. Să se calculeze raportul razelor traiectoriilor circulare a particulelor R_{α}/R_{p} , $(q_{p}=e,\ q_{\alpha}=2e,\ m_{p}=1,67\cdot10^{-27}\ \mathrm{kg},\ m_{\alpha}=6,65\cdot10^{-27}\ \mathrm{kg})$.

R: 1,41.

5.8. Particule elementare*

Fizica particulelor elementare se ocupă cu particulele de bază din care se presupune a fi formată întreaga materie din Univers. În sens mai larg, în prezent, particule elementare sunt considerate toate particulele care nu sunt atomi sau nuclee (cu excepția protonului, care formează nucleul de hidrogen). De aceea, acestea mai sunt numite și particule subnucleare.

5.8.1. Interacțiile fundamentale*

Particulele elementare pot să interacționeze atât între ele cât și cu nucleele atomice ale mediului în care se află, și cu electronii ce gravitează în jurul lor.

Până în prezent se cunosc patru tipuri de interacții care intervin direct sau indirect în fenomenele din natură: tari, electromagnetice, slabe și gravitaționale.

• Interacțiile tari sau nucleare asigură stabilitatea nucleului atomic. Aceste forțe nucleare acționează pe distanțe foarte mici, de ordinul a 10^{-15} m. Sunt cele mai intense din câte se cunosc în natură, de unde și denumirea. Fiecare nucleon al unui nucleu interacționează numai cu nucleonii din imediata sa vecinătate. Particulele care interacționează tare, vom reveni asupra lor, se numesc hadroni, sunt formate din quarcuri¹ și se împart în două mari subclase: (1.) mezonii formați din două quarcuri $(q\bar{q})$, de exemplu pionii, kaonii și (2.) barionii formați din 3 quarcuri (protonul, neutronul, hiperonii) (qqq).

Intensitatea forței tari de legătură care se exercită între quarcuri trebuie să fie extraordinar de mare, astfel că între protonii și neutronii strâns uniți în nucleu ar putea să acționeze o forță reziduală, numită forță tare nucleară, o rămășiță, de intensitate mare, de fapt, a forței de atractie între quarcuri. Acceptată de lumea

¹ Ipoteza quarcurilor a fost introdusă în anul 1964 de Gell-Mann și S. Zweig (premii Nobel, 1969), independent unul de altul.

științifică, forța tare a putut fi ușor modelată matematic, încadrându-se ușor în modelul actual al structurii materiei, numit *modelul standard*. Acest model precizează și natura particulelor care sunt constituenții elementari ai materiei.

• *Interacțiile electromagnetice*, de rază de acțiune practic infinită, se exercită între particulele încărcate electric, forța de interacție fiind dată de legea lui Coulomb. Comparativ cu interacțiile nucleare sunt de la 100 până la 1000 de ori mai mici.

Forța electromagnetică leagă electronii și nucleele pentru a forma atomi. Atomii, deși sunt neutri electric, interacționează printr-o forță electromagnetică reziduală, pentru a forma molecule.

- *Interacțiile slabe*. Măsurătorile făcute asupra dezintegrării neutronului au arătat că forța implicată în eveniment era extraordinar de slabă, de 10¹³ ori mai mică decât intensitatea forțelor nucleare dacă se ia ca unitate forța tare (la distanța de 10⁻¹³ m). Raza de acțiune a interacțiilor slabe este de ordinul 10⁻²⁴ m. Ea se manifestă deci la transmutarea (dezintegrarea) particulelor elementare și a nucleelor, deseori propulsând produsele rezultate la viteze foarte mari. Unele asemănări între interacțiunile electromagnetice și cele slabe, au condus la schema unei unificări a celor două forțe, rezultând forța electro-slabă. Această unificare se explică și prin faptul că la distanțe foarte mici, adică la energii foarte mari, forța slabă este egală cu forța electromagnetică. Aparenta manifestare slabă în experimentele realizate la energii joase ar reflecta doar raza sa scurtă a zonei sferice de acțiune. În anul 1979, S. Weinberg, A. Salam și G. Glashorow au primit Premiul Nobel pentru elaborarea teoriei unificate a interacțiilor electromagnetice și slabe.
- *Interacțiile gravitaționale* sunt cele mai slabe interacțiuni care se pot exercita. Pentru particulele izolate nici nu se iau în considerație, fiind cu totul neglijabile față de celelalte interacțiuni.

Ele devin notabile pentru corpurile masive și, mai ales, în cazul corpurilor ceresti.

În cazul particulelor elementare intensitatea acestor forțe este de 10^{38} de ori mai slabă pentru $r=10^{-13}$ m decât intensitatea forțelor tari. Au o rază de acțiune teoretic infinită.

Clasificarea fiind primul stadiu în înțelegere, tabelul 5.4 prezintă, în completare, valorile tipice ale constantelor de interacție și ale razelor de acțiune pentru interacțiile fundamentale cunoscute în prezent. Raza de acțiune este exprimată în metri. În tabel sunt date, de asemenea, probabilitățile tipice de interacție internă (durată) și de interacție între sisteme (secțiune eficace) corespunzând celor patru interacții. Această clasificare conduce, așa cum vom vedea mai departe, la una dintre modalitățile de sistematizare a particulelor elementare.

- Particulele elementare, ca atare, fără structură, care fac parte din modelul standard, se împart în:
- 1. Particule-mesager (cuante de câmp), care transmit interacțiunile fundamentale: fotonul transmite interacțiunile electromagnetice, bosonii vectoriali

Interacțiile fundamentale și mărimile lor caracteristice

Tabelul 5.4

Interacția	Constanta de interacție	Raza de acțiune [m]	Secțiune eficace [m²]	Durată tipică [s]
tare	≈ 1	10^{-15}	10^{-32}	≥ 10 ⁻²²
electromagnetică	≈10 ⁻² -10 ⁻³	8	10^{-36}	≥ 10 ⁻²⁰
slabă	≈10 ⁻⁵	10^{-18}	10-42	≥ 10 ⁻¹⁴
gravitațională	≈10 ⁻³⁹	∞	_	≥ 10 ⁻⁸

intermediari W^{\pm} și Z_0 intermediază interacțiunile slabe, *gluonii* transmit interacțiunile tari și *gravitonul* intermediază interacțiunile gravitaționale.

- 2. Particulele-sursă a câmpurilor de interacțiune:
- 2a. *Quarcurile*: u(up), d(down), c(charm), s(strange), t(top), b(beauty).
- 2b. *Leptonii*, care nu participă la interacțiunile tari: *electronul*, *miuonul*, *tauonul*, și *neutrinul electronic*, *miuonic și neutrinul tau*; intereacționează slab și electromagnetic.

Nucleonii proton și neutron, deși sunt considerate particule elementare, nu mai sunt simple particule ci sisteme de quarcuri cu o structură internă complexă: p(uud), n(udd).

Particulele elementare care interacționează tare, electromagnetic și slab, se numesc *hadroni* și se împart în două subclase: *mezonii* formați din 2 quarcuri (de exemplu, *pionii*, *kaonii*) și *barionii*, formați din 3 quarcuri (de exemplu, *protonul*, *neutronul*, *hiperonii*).

Principalii hiperoni sunt: lambda (Λ), omega (Ω^{-1}), sigma (Σ^{\pm} , Σ^{0}).

5.8.2. Caracteristicile comune ale particulelor elementare*

Particulele elementare se caracterizează prin următoarele mărimi:

- − *Masa* (*m*).
- Timpul de viață (τ) . Particule stabile sunt electronul, protonul, fotonul; restul de particule sunt instabile.
- Spinul (\vec{S}). Una dintre cele mai importante caracteristici ale particulelor elementare este mărimea fizică moment cinetic propriu (de spin).

Această proprietate intrinsecă a particulei care apare în cadrul mecanicii cuantice a fost interpretată, în mod intuitiv, ca definind starea de rotație a particulei în jurul axei proprii. Spinul particulelor elementare este caracterizat prin aceea că modulul proiecției sale pe o axă arbitrară este egal cu $s\bar{h}$, unde $\bar{h} = h/2\pi$ (h fiind constanta lui Planck), iar s este numărul cuantic de spin. Acesta are, una dintre valorile: 0, 1/2, -1/2 sau 1 (fotonul) și 3/2 (hiperonii Δ , Ω^-). Toate particulele elementare au spin.

Din punct de vedere al spinului, particulele elementare se împart în două categorii:

- a) Particule cu număr cuantic de spin *s* întreg (0; 1; 2; ...), denumite *bosoni*, după numele fizicianului indian S. T. Bose. Bosonii nu se supun principiului de excluziune a lui Pauli; pe același nivel energetic, cu aceleași numere cuantice, pot exista un număr nelimitat de particule.
- b) Particule cu numărul cuantic de spin semiîntreg (1/2; 3/2; 5/2; ...), numite *fermioni*, după numele fizicianului italian Enrico Fermi. Fermionii se supun principiului de excluziune al lui Pauli, astfel că într-o stare cuantică nu se poate găsi mai mult de un fermion.

Fermionii sunt particulele-sursă a câmpurilor de interacțiune (quarcurile și leptonii). Stările legate formate dintr-un număr impar de fermioni sunt, de asemenea, fermioni (de exemplu, barionii, adică nucleonii și hiperonii, care sunt formați din trei quarcuri).

Bosonii sunt particule de interacție (particulele-mesager, adică particule-le-cuante ale câmpului de interacțiune).

- Sarcina electrică (Q), unde Q este cuantificată: Q = ne, $n = 0, \pm 1, \pm 2$, sau n este 1/3 sau - 2/3 pentru quarcuri; e este sarcina electrică elementară, adică valoarea absolută a sarcinii electronului sau (altfel spus), sarcina electrică a protonului.

Hadronii, care cuprind barionii şi mezonii, sunt formați din quarcuri pentru care s-au definit (în stil american, neprotocolar) două caracteristici (numere cuantice): culoarea: fiecărui tip de quarc i s-au atașat trei culori diferite roșu, albastru, și verde – și aroma – u, d, s, c, b, t. Hadronii sunt incolori (albi) conform regulei care afirmă că "sistemul format din quarcuri colorate, trebuie în final să fie fără culoare".

Nu se pot pune în evidență quarcuri liberi. Se presupune că forțele de culoare care mențin quarcurile împreună sunt dependente de un potențial care crește cu distanța, caz asemănător acelui resort care ține legate împreună două bile. Cu cât se încearcă separarea mai mare a bilelor, se întâmpină o rezistență și mai mare.

Într-o reacție nucleară se conservă sarcina electrică și numărul de nucleoni (protoni și neutroni). Pentru explicarea conservării numărului de nucleoni s-a introdus o mărime nouă, *sarcina barionică* (*B*) (sau numărul cuantic barionic). Fiecare particulă este caracterizată și prin sarcină electrică și sarcină barionică. Astfel, neutronul are sarcina electrică 0 și sarcina barionică +1; protonul are sarcina electrică (elementară) +1 și sarcina barionică +1 (v. tabelul 5.5).

Aplicație. Să se verifice legea de conservare a sarcinii electrice și legea de conservare a sarcinii barionice pentru următoarea reacție nucleară:

$$p + {}^{10}_{5}B \rightarrow {}^{11}_{5}B + \pi^{+}.$$

Rezolvare: Q = +1 + 5 + 5 - 5 + 1 = 0; B = +1 + 10 - 11 + 0 = 0.

Întrucât în reacțiile nucleare la energii mici nu se generează particule, conservarea sarcinii barionice este echivalentă conservării numărului de nucleoni.

- Spinul izotopic (T), Din punct de vedere al interacțiunilor nucleare, neu-

Particule elementare ale modelului standard

Tabelul 5.5

Familia	a Leptoni			Quarcuri				
sau gene- rația	Particula și anul descoperirii	Simbol	l	electri-	Particula și anul descoperirii	Aroma Simbol	Masa de repaus [MeV/c²]	Sarcina electrică [e]
I	Neutrinul electronului (1954) Electronul (1898)	v _e	$ 20 \text{ eV}/c^2 \\ \neq 0 \\ 0.511 $	0	Up (sus) Down (jos)	u d	2–8 5–15	+2/3
II	Neutrinul miu- onului (1962) Miuonul (1936)	ν _μ μ	≠ 0 105,658	0 -1	Charm (farmec) (1974) Strange (straniu) (1974)	c s	1500 300	+2/3 -1/3
III	Neutrinul taonului Taonul (1975)	ν _τ τ	< 164 1784,3	0 -1	Top/Truth (vârf/adevăr) (1995) Bottom/Beauty (bază/frumusețe) (1977)	t b	175·10³ 4500	+2/3 -1/3

- Modelul standard include 6 leptoni şi 18 quarcuri, adică fiecărui quarc din tabel îi sunt asociate şi cele trei sarcini color. În plus, fiecărei particule din tabel îi corespunde câte o antiparticulă (cu sarcina de semn opus).
- 2. În anul 1998 s-a descoperit, că neutrinii au masă de repaus.

Principalii barioni cu spinul 1/2

Tabelul 5.6

Barioni	Conținutul	Sarcina	Masa	Timpul de	Principalele
	în quarcuri	electrică	$[MeV/c^2]$	viață	dezintegrări
		[în unități de e]		[s]	
Nucleoni					
p	uud	+1	938,272	∞	_
n	udd	0	939,565	886,7	$\text{pev}_{_{ ext{e}}}$
Hiperoni					
Λ	uds	0	1115,683	$2,63\times10^{-10}$	$p\pi^-$, $n\pi^0$
Σ^+	uus	+1	1189,37	$0,80 \times 10^{-10}$	$p\pi^0$, $n\pi^+$
Σ^0	uds	0	1192,642	$7,4\times10^{-20}$	Λγ
Σ^-	dds	-1	1197,449	$1,48 \times 10^{-10}$	nπ-
Ξ^0	uss	0	1314,83	$2,90 \times 10^{-10}$	$\Lambda\pi^0$
Ξ-	dss	-1	1321,31	$1,64 \times 10^{-10}$	$\Lambda\pi^-$

tronul și protonul au proprietăți identice, fiind stări ale aceleiași particule, nucleonul. Deosebirile care apar între neutron și proton, mase puțin diferite, sarcini diferite (zero sau e) etc., sunt atribuite interacțiunilor electromagnetice. Se consideră că nucleonul are un spin izotopic T=1/2, iar neutronul și protonul se deosebesc prin proiecția spinului izotopic $T_z=\pm 1/2$ (formează un dublet). Denumirea de spin izotopic provine de la faptul că neutronul și protonul ar fi "tipuri izotopice" ale nucleonului, la fel cum izotopii sunt diverse tipuri ale unui element chimic.

Interacțiunea nucleară este transmisă de pioni și s-a presupus că aceștia formează un multiplet față de spinul izotopic T = 1, deosebindu-se prin proiecția spinului izotopic $T_z = +1$, 0, -1 (formează tripletul p^+ , p^- , p^0).

- Stranietatea (S). În reacțiile nucleare la energii înalte s-a observat că sunt particule elementare care se generează numai în perechi; de exemplu, un hiperon Λ apare însoțit de un mezon K^0 și niciodată singur. Această "stranietate" a condus la ideea că ar exista un număr cuantic nou, S, care se conservă, numit stranietate.

Să considerăm două reacții:

$$\pi^- + p \, \rightarrow K^0_{S=1} \, + \, \Lambda_{S=-1} \,$$
 și $\Lambda_{S=-1} \, \rightarrow \pi^- + p$.

În prima reacție, stranietatea se conservă, dezintegrarea produselor reacției se efectuează prin intermediul interacțiunilor tari și timpul de dezintegrare este scurt. În a doua reacție, stranietatea nu se conservă, dezintegrarea se efectuează prin interacții slabe și timpul de dezintegrare este relativ lung. Stranietatea se poate calcula cu ajutorul relației S = 2 < Q > -B, unde B este sarcina barionică, iar $< Q > = Q - T_z$ (unde Q este sarcina electrică, T_z proiecția spinului izotopic) este sarcina electrică medie a unui multiplet. Verificare (v. tabelul 5). Dacă $< Q > (\Lambda) = 0$, rezultă pentru Λ , S = -1.

5.8.3. Scurt istoric

Prima particulă elementară descoperită a fost electronul, în 1897, de către J. J. Thomson (Premiul Nobel, 1906). Denumirea de electron a fost dată de C. J. Stoney, fizician și astronom irlandez. În anul 1919, E. Rutherford (Premiul Nobel, 1908), elev a lui J. J. Thomson, a descoperit protonul ($q_p = e, m_p = 1836m_e$), particulă care era expulzată din nucleul atomic la bombardarea acestuia cu particule α . În anul 1932 J. Chadwick, elevul lui Rutherford, a descoperit neutronul cu masa puțin diferită de cea a protonului și neutru din punct de vedere electric, constituind cealaltă componentă a nucleului atomic.

Fotonul a fost introdus de M. Planck în anul 1900, ca o cuantă a câmpului electromagnetic pe care atomii o emit sau o absorb. Primele experimente reuşite pentru detectarea fotonului au fost făcute în anul 1921 de H. Bothe.

Neutrinul a fost prezis de W. Pauli în anul 1930; neutrinul electronic a fost descoperit abia în anul 1953. În anul 1962 s-a constatat experimental existența a două tipuri de neutrini, electronic și miuonic.

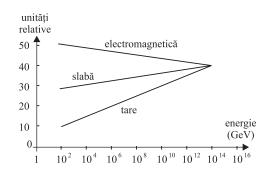
Mediatorii interacțiilor fundamentale

Tabelul 5.7

Mediator	Sarcina electrică [<i>e</i>]	Masa [GeV/c²]	Interacția	
gluon	0	0	tare (culoare)	
foton	0		el-mag.	electroslabă
W^{\pm}	±1	80,33	slabă (încărcată)	
\mathbf{Z}^0	0	91,187	slabă (neutră)	

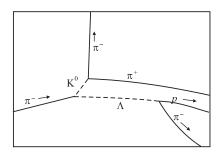
În anul 1936, C. D. Anderson (Premiul Nobel, 1936) descoperă în radiația cosmică miuonul cu masa $m_{\mu} = 211 m_e$. În anul 1977 a fost detectat leptonul tau, adică tauonul, care împreună cu electronul și miuonul au practic aceleași proprietăți, diferind doar prin masa lor.

În anul 1935 H. Yukava, a prezis existența mezonilor. În anul 1947 au fost descoperiți experimental în radiația cosmică primii mezoni, pionii (π^{\pm}), care intermediază interacțiunea dintre nucleoni.


Între anii 1940–1950 s-au observat particulele care conțineau quarcul s: kaonii și hiperonii. Între anii 1950–1960 s-a constatat experimental că nucleonii sunt formați din quarcuri. În anul 1974 colectivele conduse de B. Richter și S. Ting (laureați ai Premiului Nobel, 1976) au descoperit independent un mezon cu masa 3–4 m_p . Au urmat o serie de particule cu charm, care conțin quarcul c: mezonii D, F, Λ_c^+ . În anul 1977 s-a descoperit o particulă cu masa $10 m_p$ – starea legată $b\bar{b}$ și în 1981 particulele cu beauty, care conțin quarcul b. În anul 1995, la Fermilab (Batavia, SUA) s-a descoperit starea legată $t\bar{t}$, care conține quarcul top t.

În anul 1983, colectivul lui Carlo Rubbia (Premiul Nobel, în anul 1984, cu S. van der Meer.) de la CERN (Centrul european de cercetări nucleare, Geneva – Elveția) a descoperit *bosonii vectoriali intermediari* W[±], Z°, preziși de *teoria electroslabă*.

Prima antiparticulă prezisă de P. A. M. Dirac (1928), *pozitronul*, a fost descoperită în radiația cosmică în anul 1932 de C. D. Anderson. Au urmat *antiprotonul* în anul 1955, antineutronul în anul 1960 și alte particule.


În anul 1950 marele fizician Enrico Fermi (Premiul Nobel, în 1938) și colaboratorii săi descoperă prima particulă numită *rezonanță*, la împrăștierea mezonilor π^+ pe protoni. Rezonanțele sunt hadroni în stări excitate. Datorită dezintegrării prin interacțiuni tari, rezonanțele au timp de viață foarte scurt, de ordinul 10^{-23} – 10^{-24} s.

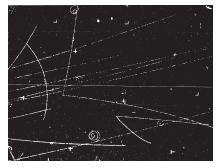

Interacțiunile – după constantele lor de cuplaj – se clasifică în raportul 1:10⁻²:10⁻¹⁰:10⁻³⁸ pentru cele tari, electromagnetice, slabe și gravifice. Constantele de cuplaj depind de energie. Există o valoare a energiei pentru care interacțiunile electromagnetice, slabe și tari, nu se mai deosebesc prin valoarea constantei de cuplaj. Potrivit estimărilor, cele trei tipuri de interacțiuni converg la o distanță extraordinar de mică de 10⁻³¹ m (corespunzând la o energie de

Fig. 5.23. Diagrama convergențelor tipurilor de interactiuni.

 $\approx 10^{15} \, \text{GeV}$) numită scara de unificare (fig. 5.23).

Fig. 5.24. Un eveniment de interacție în camera cu bule.

La energii mai joase sunt unificate, așa cum am mai afirmat, doar interacțiunile electromagnetice și slabe în teoria unificată electro-slabă propusă la începutul anilor 1970. Această teorie prezice existența bosonului Higgs (care generează masele celorlalte particule), recent pus în evidență (5 septembrie 2000) la CERN (Geneva). Metoda folosită la giganticul accelerator LEP (circumferință de 27 km) este aceea a fasciculelor încrucișate în care se ciocnesc electroni cu pozitroni la energii extrem de mari. Această particulă (Higsson), dată fiind importanța ei pentru teoria interacțiilor fundamentale, este denumită în lumea specialistilor "particula lui Dumnezeu". Pentru cercetările asupra acestei particule s-au cheltuit peste 10 miliarde de dolari, necesari creării acceleratorului supersofisticat LEP menit să permită confirmarea (sau nu) a ipotezei lui Higss, avansată încă din anul 1964.

Un impact extrem de profund în descoperirea de noi particule și rezonanțe l-a avut tehnica de detecție în sistemul camerelor cu bule, dezvoltat în principal de Luis Alvarez (Premiul Nobel, în anul 1968). Pentru exemplificare, în figura 5.24 este reprodusă fotografia unui eveniment de interacție înregistrat prin această tehnică. În fotografie apare interacția unui mezon π^- având impulsul de 1 GeV/c cu un proton în camera cu bule cu hidrogen lichid. Reacția observată este:

$$\pi^- + p \rightarrow K^0 + \Lambda$$

urmată de dezintegrările:

$$\mathrm{K}^0
ightarrow \pi^{\scriptscriptstyle +} + \pi^{\scriptscriptstyle -} \mathrm{\ si\ } \Lambda
ightarrow \pi^{\scriptscriptstyle -} + p.$$

Vizualizarea directă a unor interacții care au loc la nivel cuantic a avut un impact excepțional și a dat strălucire acestei metode în fizica particulelor elementare.

5.8.4. Radiația cosmică*

În urma experimentelor cu camera Wilson, fotoemulsiilor nucleare etc. s-a dedus că radiația cosmică este formată dintr-un flux de particule elementare care ajung la suprafața Pământului. Există *radiația cosmică primară* și cea *secundară*, creată în atmosfera terestră de interacțiunea radiației cosmice primare cu nucleele atomice ale gazelor care compun aerul atmosferic periterestru. Existența radiației cosmice a fost stabilită în anul 1912 de fizicianul austriac Victor Hess (Premiul Nobel, 1936), prin observarea ionizării aerului. Prin studiul proprietăților radiației

cosmice s-au descoperit pozitronul, miuonul, hiperonul lambda, kaonii K, piuonul π . Radiația primară este formată în proporție de 90% de protoni, 7,5% de particule α și diferite nuclee ale elementelor ușoare ($Z \le 41$). Radiația cosmică secundară, formată sub acțiunea celei primare, este constituită și din particule cu viață scurtă (mezonii π) care nu ajung departe de locul formării, dezintegrându-se. Procesul de formare în cascadă a cuantelor γ și a perechilor e^{\pm} determină componenta moale a radiației secundare: $\pi^0 \to 2\gamma \to e^{\pm}$. Pe măsura pătrunderii în atmosfera joasă (≤ 10 km), componenta moale este absorbită mai puternic, astfel încât componenta dură, mai penetrantă, este la nivelul mării în proporție de 2/3. Particulele elementare cu sarcină electrică a căror energie cinetică este, la incidență normală, sub o anumită limită nu ajung la suprafața Pământului, ci urmează liniile de câmp magnetic, fiind deviate spre poli. Deci, cu creșterea latitudinii, intensitatea radiației cosmice secundare (φ) trebuie să fie mai mare la poli (efect geomagnetic de latitudine). Intensitatea radiației cosmice este mai mare spre vest și mai mică spre est ("anomalia est-vest"), ceea ce arată că în radiația cosmică primară numărul de particule elementare încărcate pozitiv este mai mare decât numărul de particule încărcate negativ. Radiația cosmică este în principal produsă de exploziile supernovelor (stele explozive, la care cea mai mare parte a stelei este expulzată în spațiul interstelar).

5.8.5. Radiația cosmică de fond*

Radiația cosmică de fond¹ este una din componentele radiației electromagnetice cosmice, numită și radiația de 3 kelvini. A fost descoperită de R. Wilson și A. Penzias, de la Bell Telephone Laboratories (SUA), în anul 1965, folosind o antenă parabolică de microunde.

Această radiație determină densitatea de energie electromagnetică și concentrația de fotoni din Univers. Corespunzător modelului Marii Explozii (Big-Bang), în fazele timpurii ale expansiunii Universului, radiația electromagnetică și plasma gazoasă au avut o densitate și o temperatură ridicate. În timpul expansiunii, temperatura a scăzut și, înainte de ~ 3·10⁵ ani, la aproximativ 3000 K, se asociază electronii cu protonii și cu nucleele de heliu formând atomii de hidrogen și de heliu. În urma acestor combinări, echilibrul dintre materia formată și radiație s-a distrus. Din această cauză, temperatura radiației a continuat să scadă și a atins 3K. Această radiație confirmă modelul Bing-Bang-ului, o parte a lui fiind descris mai sus, cât și etapa formării atomilor neutri de hidrogen și heliu.

Principalele faze de posibilă participare a particulelor elementare în primele 3 minute ale Universului sunt conținute în tabelul 5.8.

Uniformitatea radiației indică faptul că în etapa combinării în atomi de H și

¹ Responsabilii programului COBE, John C. Mather (NASA) și George F. Smoot (Univ. Berkeley, California, USA) au primit Premiul Nobel în anul 2006, pentru "descoperirea formării corpurilor negre și a anizotropiei radiației cosmice de fond".

He nu existau neomogenități ale densității capabile să determine ulterior formarea galaxiilor.

Înainte de formarea atomilor, presiunea radiației electromagnetice era enormă (în esență, datorită interacțiunii fotonilor cu electronii liberi). În schimb, după formarea atomilor, deci odată cu dispariția electronilor liberi, prin legarea lor în atomi, Universul devine "transparent" la radiația fotonică și, datorită acestui fapt, presiunea radiației devine ineficientă, nemaiafectând distribuția substanței. Pe măsură ce confinarea substanței concentrate într-o zonă spațială oarecare crește, crește și temperatura miezului. Când această temperatură ajunge la aproximativ 10⁵ K, atomii din miezul stelei astfel apărute sunt total ionizați, formându-se astfel o plasmă de protoni, de particule α și de electroni. Încep să fie posibile reacțiile de fuziune constând în ciclul proton-proton, adică sinteza a patru protoni într-un nucleu de heliu cu eliberarea unei energii de 26,7 MeV pentru fiecare ciclu. Plasma se încălzește, evoluția stelei depinzând decisiv de masa acesteia. Dacă masa stelei este mai mică decât 0,7 mase solare, m < 0,7 m, are loc o ardere lentă a protonilor în ciclul proton-proton. După ce se epuizează combustibilul protonic, steaua intră în agonie și devine (în final) o "stea moartă" așa cum este Terra. Dacă masa m a stelei analizate îndeplinește condiția $0.7 m_s < m < 1.4 m_s$ unde $m_s = 1,991 \cdot 10^{30}$ kg este masa Soarelui (de 740 de ori mai mare decât masa planetelor la un loc), atunci evoluția ei foarte probabilă este spre cea de gaură neagră¹, adică produs final al colapsului gravitațional. Denumirea vine din faptul

Tabelul 5.8

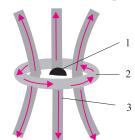
Timpul cosmic	Faza	Procesul dominant	$\rho(kg/m^3)$	T(K)
0	Singularitate spațio-temporală	Marea Explozie		
10 ⁻⁴³ s	Faza particulelor elementare	Crearea de particule și antiparticule	4,5·10 ⁹⁴	$4,7 \cdot 10^{31}$
10 ⁻⁶ s	Faza hadronică	Anihilare barion- antibarion	$4,5\cdot 10^{20}$	1,5·10 ¹³
1 s	 Faza leptonică	Anihilare e ⁻ –e ⁺	4,5.108	$1,5\cdot 10^{10}$
3 ani	Faza reacțiilor de sinteză	Sinteza nucleelor de deuteriu și de heliu	1,4·104	1,1·109
3·10 ⁵ ani	Posibile "aglomerări" de substanță 9,2·10 ⁻¹⁹			3000(?)
	Era substanței			

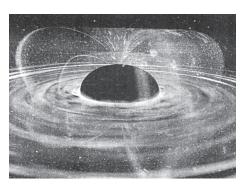
¹ Fizicianul american J. A. Wheeler a creat termenul de gaură neagră, în anul 1969.

că acest obiect ceresc nu trimite nicio radiație fotonică sau corpusculară, din cauza câmpului gravitațional intens de pe suprafața lui, care necesită viteze superluminice pentru ca o particulă să îl poată părăsi.

Prin intermediul fenomenului de acreție de materie, adică de captare

gravitațională de către gaura neagră a corpurilor cerești mici, se obține totuși, o radiație X intensă a acesteia, după următorul mecanism. Captarea de materie face să apară un "disc de acreție" în vecinătatea găurii negre format din particule care se rotesc în timpul căderii gravitaționale (fig. 5.25). Frecarea dintre diferitele straturi dense ale discului este atât de intensă încât aceasta conduce la supraîncălzirea materiei și ca atare, la apariția unei radiații termice Röntgen. Numită radiație X (sau Röntgen, după numele celui care a descoperit-o în anul 1895 – primul Premiu Nobel, în anul 1901), a fost detectată în câteva zeci de galaxii și, de asemenea, în centrul galaxiei noastre, calea Lactee. În nucleele active ale galaxiilor există găuri supermasive cu masele cuprinse între $10^6-10^8 \ m_{\odot}$.




Fig. 5.25. În cazul găurii negre ("black hole") se formează jeturi gazoase având viteze apropiate de viteze luminii în vid, c. 1 – gaură neagră masivă; 2 – discul de acreție; 3 – jet de gaze.

În anul 1994, satelitul american COBE (Cosmic Background Explorer) a transmis imaginea unor semnale termice captate care reprezentau două regiuni pe bolta cerească, având temperatura puţin diferită de cea de fond. Acest fenomen ne arată că sistemul solar se deplasează cu viteza de 390±60 km/s în direcţia constelaţiei Leului. Înregistrarea acestor semnale termice reprezintă totodată o imagine, provenită de la o distanţă de o sută cincizeci de mii de miliarde de miliarde de km de Pământ, a ceea ce era Universul acum cincisprezece miliarde de ani, deci 300 000 de ani de la Big-Bang. Interpretarea datelor transmise de către acest satelit, indică faptul că, în cel mai vechi moment al existenţei Universului "văzut" de către om, galaxiile erau deja în formare sau chiar formate, după unii astrofizicieni.

Data de naștere a Universului, considerat în expansiune, stabilită mai sus, este ultima, până în prezent, calculată de astrofizicieni.

Cercetările concertate asupra Universului vor face poate, în urma concluzionării lor, ca definiția, precum și teoria apariției Universului, să difere față de cele admise în prezent: *Universul* reprezintă întreaga lume nemărginită în timp și spațiu, caracterizată printr-o multitudine de alcătuiri ale materiei (substanță sau fotonică), aflate în diferite stadii de dezvoltare, lume care există în mod obiectiv, independent de creația omului; creație care, privită și prin prisma particulelor elementare, va da omenirii în următoarele câteva decenii centralele de fuziune nucleară, iar tehnologiile industriale vor deveni fotonice. Creația, la modul general, înseamnă acțiunea de descifrare a Universului spre binele civilizației, iar aici știința deține rolul principal.

De la scenarii S.F., la realitate. Paradoxul găurilor negre a fost elucidat?

Timp de aproape 30 de ani, celebrul astrofizician englez Stephen Hawking a argumentat că nimic din ceea ce intră în câmpul gravitațional al unei găuri negre nu mai poate ieși din aceasta.

Nu demult, însă, autorul faimoasei cărți "O scurtă istorie a timpului" a declarat că – atât el, cât și alți importanți oameni de știință – au greșit în privința teoriilor referitoare la "paradoxul"

găurilor negre, precizând că, potrivit unor ultime cercetări, capcanele galactice ar putea permite informațiilor (u.e.m.) să scape din câmpul lor gravitațional. "M-am gândit la această problemă în toți acești ultimi 30 de ani și cred că acum dețin răspunsul ei. O gaură neagră doar pare să se formeze, însă mai târziu ea se deschide și eliberează informațiile atrase în ea" a menționat Stephen Hawking.

Procesul care are loc într-o gaură neagră – o regiune din spațiu unde materia este comprimată la un asemenea nivel încât nici lumina nu poate scăpa din câmpul gravitațional imens al acesteia – a reprezentat o enigmă pentru mai toți oamenii de știință. Științific vorbind, gravitația este o manifestare a curburii spațiu-timp. Obiectele masive distorsionează spațiul și timpul, astfel încât regulile uzuale ale geometriei nu se mai aplică. Iar lângă o gaură neagră, distorsiunea spațiu-timp este foarte severă și, din această cauză, găurile negre au proprietăți dintre cele mai ciudate.

Până în prezent s-a considerat că o gaură neagră are ceva ce se cheamă "orizontul evenimentului". Conform teoriilor, acesta este o suprafață sferică, ce marchează granița găurii negre, iar prin acest "orizont" se poate "intra", dar nu se mai poate ieși niciodată. Stephen Hawking argumentează însă că aceste găuri negre permit informațiilor să părăsească câmpul lor gravitațional. Ideea unei concentrări de masă atât de densă încât nici lumina nu poate scăpa datează din secolul al XVIII-lea, de pe timpul lui Laplace.

Probleme rezolvate

1. O particulă are impulsul $p=0.13~{\rm GeV}/c$ și energia cinetică $E_c=50~{\rm MeV}$. Să se calculeze: a) masa de mișcare exprimată în unități atomice de masă; b) viteza particulei. c) Să se identifice particula elementară folosind tabelul III din Anexe.

a) Din relațiile:
$$mc^2 = c\sqrt{p^2 + m_0^2 c^2}$$
 și $E_c = (m - m_0)c^2$ se obține: $m = \frac{1}{2} \left(\frac{p^2}{E_c} + \frac{E_c}{c^2} \right)$.

Înlocuind numeric, rezultă: m = 0.2075 u.

b) Cum
$$\beta = \frac{\sqrt{\eta^2 + 2\eta}}{1 + \eta}$$
 iar $\eta = \frac{E_c}{E_0}$ și $\beta = \frac{\boldsymbol{v}}{c}$ rezultă

$$v = c \frac{\sqrt{0.347^2 + 2 \cdot 0.347}}{1.347} = 2 \cdot 10^8 \text{ m/s}.$$

- c) $E_0=m_0c^2=E_c-mc^2\approx 193,75$ MeV. Particula identificată este Kaomul (K⁺) cu numărul de sarcină + 1 ($E_0=194$ MeV).
- **2.** La ce valoare a energiei cinetice a protonilor perioada de rotație se modifică cu 1% față de perioada de rotație în cazul nerelativist?

$$T_0 = \frac{2\pi m}{qB}, \ T = \frac{2\pi (E_c + m_0 c^2)}{c^2 qB}; \ T - T_0 = \Delta T = \frac{2\pi E_c}{c^2 qB}, \ \frac{\Delta T}{T} = \frac{E_c}{E_c + m_0 c^2} = 0,01, \ \text{de}$$
 unde rezultă $E_c = 0,0101 \ m_p c^2 = 9,489 \ \text{MeV} \approx 9,5 \ \text{Mev}.$

3. Să se verifice legile de conservare a sarcinii electrice și a sarcinii barionice în următoarele reacții:

Probleme propuse

- 1. Barionii se împart în două "subgrupe". Una este cea a nucleonilor (n, p), cealaltă a ...?
- **2.** Dacă într-o posibilă aglomerare de 10³¹ protoni s-ar observa o dezintegrare a protonului, care ar fi vârsta protonului?

R: 10^{31} ani.

- 3. Miuonii sunt particule instabile, viața lor medie fiind de ordinul microsecundelor. Miuonul μ^- se dezintegrează după schema $\mu^- \to e^- + \nabla_e + \nabla_\mu$. Analog, care va fi schema de dezintegrare pentru μ^+ ? Subzistă particulele dezintegrării în miuoni?
- **4.** Care particule constituie agregate formate din două quarcuri și care din trei quarcuri? Ce tip de particule sunt acestea, din punct de vedere al numărului cuantic *s*?
- 5. Să se scrie schema de dezintegrare a neutronului cunoscând că unul dintre quarcurile d ale neutronului se transformă într-un quarc u și că al treilea termen al dezintegrării îl reprezintă un antineutrin (de tip?).
- **6.** Într-o reacție nucleară în care particulele care interacționează au substructura formată din quarcuri, se pot considera quarcurile ca fiind în stare liberă pe durata reacției nucleare?
- 7. Termenii de hadron, lepton, fermion sunt utilizați în clasificarea particulelor. Care dintre aceștia pot fi aplicați quarcurilor?
- **8.** Hiperonul Σ^{*0} dezintegrează în următoarele canale (moduri): $\Sigma^+ + \pi^-$, $\Sigma^- + \pi^+$, $\Sigma^0 + ?$ și $\Lambda + ?$. Înlocuiți corespunzător semnele de întrebare.

- 9. Sunt posibile structuri hadronice formate numai din cuplajul a doi sau trei gluoni?
- 10. Se dezintegrează, sau nu, toți hiperonii? Indicație: v. tab. III din Anexe.
- 11. Pentru masa de repaus a neutrinului electronic, s-a constatat experimental că aceasta trebuie să fie $< 20 \text{ eV}/c^2$. Să se exprime inegalitatea în kilograme.

R:
$$m_{0_{v_e}} < \frac{20 \cdot 1, 6 \cdot 10^{-19}}{9 \cdot 10^8} = ?.$$

Test recapitulativ

- 1. Elementele ⁷⁶₃₂Ge şi ⁷⁶₃₄Se sunt izotopi sau izobari?
- 2. "Înălțime" barierei de potențial este dată de relația:

a)
$$\frac{Z_1 Ze}{4\pi\epsilon_0 R}$$
; b) $\frac{Ze^2}{4\pi\epsilon_0 R}$; c) $\frac{Z_1 Ze^2}{4\pi\epsilon_0 R}$.

- 3. În legea dezintegrării radioactive $N = N_0 e^{-\lambda t}$, N reprezintă:
- a) numărul de nuclee dezintegrate;
- b) numărul de nuclee nedezintegrate;
- c) numărul total de nuclee.
- 4. Relația dintre activitatea Λ și constanta radioactivă λ este:
- a) $\Lambda = \lambda N$; b) $\Lambda = \lambda / N$; c) $\lambda = \Lambda N$.
- 5. Calculați de câte ori este mai mare decât timpul de înjumătățire intervalul de timp în care activitatea sursei scade de 16 ori.
- 6. Câte nuclee se dezintegrează din două grame de radiocobalt ⁶⁰₂₇Co în timp de 5,3 ore? $(T_{1/2} = 5.3 \text{ ani}).$
- 7. Să se calculeze energia de legătură pe nucleon, pentru nucleul de $\frac{235}{92}$ U cu masa de repaus de 235,04393 u. Se cunosc: $m_n = 1,007299$ u și $m_n = 1,008690$ u.
 - 8. Să se indice care dintre nuclee sunt izotopi și care sunt izobari: \(^{14}_{6}\text{C}\), \(^{14}_{7}\text{N}\), \(^{16}_{8}\text{O}\), \(^{14}_{8}\text{O}\).
 - 9. Identificați relația energiei de legătură a nucleului:
 - a) $a = Am_pc^2 + Zm_nc^2 m_Ac^2$; b) $Zm_Hc^2 + (A Z)m_nc^2 m_Ac^2$; c) $Zm_Hc^2 + Am_nc^2 m_Ac^2$.
 - 10. Prin bombardarea nucleului de ²⁴₁₂Mg cu nuclee X are loc reacția:

$$^{24}_{12}Mg + X \rightarrow ^{1}_{1}p + ^{23}_{13}Al$$

 $^{24}_{12}{\rm Mg} + X \to {}^1_1\!p + {}^{23}_{13}{\rm Al}$ Precizați numărul atomului și numărul de masă al nucleului X și identificați-l din tabloul lui Mendeleev.

Anexe

Sistemul periodic al elementelor

1	1(I ^a)	2(II ^a)					1 H 1,008	2 He 4,003 2	
2	3 LI 6,941 ½	Be 9,012 $\frac{2}{2}$							
3	Na 122,99 8	12 Mg 2 24,31 8	3(III ^a)	4(IV ^a)	5(V ^b)	6(VI ^b)	7(VII ^b)	8(VIII ^b)	9(VIII ^b)
4	19 K 1 8 8 9,10 8 2	20 Ca 2 40,08 8	21 Sc ² ₉ 44,96 ⁸ ₂	22 Ti 2 10 8 47,88 8	23 V 2 11 50,94 8 2	Cr 1 13 52,00 8 2	25 Mn 2 13 54,94 8 2	Fe 2 55,85 2	C0 25 58,93 2
5	Rb 18 85,47 82	38 Sr ² 87,62 ⁸ 82	39 Y 2 9 18 88,91 8 2	40 Zr 10 10 18 91,22 8	Nb 12 12 12 18 92,21 8 2	42 Mo 13 18 95,94 8 2	43 Tc ¹³ ₁₈ 98,91 ⁸ 2	Ru 15 18 101,1 8 2	45 Rh 16 18 102,9 8 2
6	55 1 8 18 132,9 8 8	56 Ba 18 137,3 8	57 La 18 5 5 5 5 5 5 5 5 5	72 Property 10 10 12 18 178,5 8 2	73 2 11 32 18 180,9 8 2	74 2 12 32 18 183,9 8 2	75 2 13 32 186,2 8 2	76 2 14 32 18 190,2 8 2	77 2 15 32 18 192,2 8
7	87 18 18 18 32 18 (223,0) 8	88 2 Ra 18 18 32 18 (226,0) 8	89 2 9	104 2 Ku/Rf 32 32 (261,0) 8 (261,0) 2	105 2 111 32 Ns/Ha 32 18 (262,0) 8				
	s^1	s^2	d^{1}	d^2	d^3	d^4	d^5	d^6	d^{7}

LANTANIDE

58 ₂	59 2	60 2		62
Ce 20	Pr 21 18 140,9 8 2	Nd 22/18 144,2 2	Pm 23 18 144,9 2	Sm 24 18
140,1	140,9	144,2	144,9	150,4

ACTINIDE

90 2	91 2	92 2	93 2	94 2
Th 18 32 18	Pg 32	\mathbf{U}_{18}^{21}		Pu 32 18
232,0 8	(231,0) 8	238,0 8	(237,0) 8	(239,1) 8
f^1	f^2	f^3	f^4	f^5

			13(III ^a)	14(IV ^a)	15(V ^a)	16(VI ^a)	17(VII ^a)	18(VIII ^a)	K
			5 B 10,81 $\frac{3}{2}$	6 C 12,01 4 2	7 N 14,01 5	8 O 16,00 6 2	9 F 19,00 $\frac{7}{2}$	10 Ne 20,18 8 2	L K
10(VIII ^b)	11(I ^b)	12(II ^b)	13 Al 3 26,98 8 2	14 Si 28,09	P 5 30,97 8 2	16 S 32,07	17 Cl 7 35,45 8	18 Ar 8 8 8 8 2	M L K
Ni 2 58,69 8 2	29 Cu 1 63,55 8	30 Zn 2 65,39 8	Ga 3 69,72 8 2	32 Ge $\frac{3}{18}$ 72,59 $\frac{8}{2}$	33 As 5 18 74,92 8 2	Se 6 18 78,96 8 2	35 Br 77 79,90 82	36 Kr 8 83,80 8 2	N M L K
Pd 18 106,4 8 2	47 Ag 16 18 107,9 8	48 Cd 18 112,44 8 2	49 In 18 114,8 8 2	50 Sn ⁴ 118,7 ⁸ 2	51 Sb 18 121,8 8	Te 18 127,6 8 2	53 I 18 126,9 8	Xe 18 18 131,3 8 2	O N M L K
78 1 17 32 32 18 195,1 8 2	79 1 1 18 32 18 197,0 8 2	80 2 18 32 18 200,6 8 2	81 3 T1 32 18 32 18 32 18 204,4 8	82	83 5 18 32 18 209,0 8 2	Po 18 (210,0) 8 (210,0)	85 7 At 18 (210,0) 8 (210,0) 8	86 8 18 32 18 (222,0) 8 2	P O N M L K
									Q P O N M L K
d 8	d 9	d 10	p 1	p ²	p ³	p 4	p 5	p 6	

63	2 64	2 65	2 66	2 67	2 68	2 69	2 70	2 71	2 P
Eu	8 25 Gd	9 25 18 Tb	⁸ 27 18 Dy	8 28 18 Ho	8 29 Er	8 30 18 Tm	8 Yb	⁸ ₁₈ Lu	9 O 32 N 18 M
152,0	157,3	8 158,9	8 162,5	8 164,9	8 167,3	8 168,9	173,0	8 2 175,0	8 L 2 K

8		8	8		8	δ		103 2	Q P
Am 32 18			Cf 32 18			Md $^{\frac{31}{32}}_{18}$	N_0 $\frac{32}{32}$		N
(243,1) 8	(247,1) 8	(247,1) 8	(252,1) 8	(252,1) 8	(257,1) 8	(256,1) 8	(259,1) 8	(260,1) 8	L K
f^6	f^{7}	f^8	f^9	f^{10}	f^{11}	f^{12}	f^{13}	f 14	

Configurațiile electronice ale elementelor

Elemen- tul chimic	<i>K</i> 1 <i>s</i>	L $2s$ $2p$	M 3s 3p 3d	N 4s 4p 4d 4f	O 5s 5p 5d 5f	P 6s 6p 6d	Q 7s
1	2	3	4	5	6	7	8
1H 2He 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 37Rb	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 3 2 4 2 5 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	1 2 2 2 2 3 2 4 2 5 2 6 2 6 2 6 2 6 2 6 4 2 6 5 2 6 6 2 6 7 2 6 8 2 6 10	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		

1	2	3	4	5	6	7	8
³⁸ Sr	2	2 6	2 6 10	2 6	2		
³⁹ Y	2	2 6	2 6 10	2 6 1	2		
40 Zr	2	2 6	2 6 10	2 6 2	2		
⁴¹ Ni	2	2 6	2 6 10	2 6 4	1		
⁴² Mo	2	2 6	2 6 10	2 6 5	1		
⁴³ Te	2	2 6	2 6 10	2 6 5	2		
⁴⁴ Ru	2	2 6	2 6 10	2 6 7	1		
⁴⁵ Rh	2	2 6	2 6 10	2 6 8	1		
⁴⁶ Pd	2	2 6	2 6 10	2 6 10			
⁴⁷ Ag	2	2 6	2 6 10	2 6 10	1		
⁴⁸ Cd	2	2 6	2 6 10	2 6 10	2		
⁴⁹ In	2	2 6	2 6 10	2 6 10	2 1		
⁵⁰ Sn	2	2 6	2 6 10	2 6 10	2 2		
⁵¹ Sb	2	2 6	2 6 10	2 6 10	2 3		
⁵² Te	2	2 6	2 6 10	2 6 10	2 4		
⁵³ I	2	2 6	2 6 10	2 6 10	2 5		
⁵⁴ Xe	2	2 6	2 6 10	2 6 10	2 6		
55Cs	2	2 6	2 6 10	2 6 10	2 6	1	
⁵⁶ Ba	2	2 6	2 6 10	2 6 10	2 6	2	
⁵⁷ La	2	2 6	2 6 10	2 6 10	2 6 1	2	
⁵⁸ Ce	2	2 6	2 6 10	2 6 10 2	2 6	2	
⁵⁹ Pr	2	2 6	2 6 10	2 6 10 3	2 6	2	
⁶⁰ Nd	2	2 6	2 6 10	2 6 10 4	2 6	2	
61Pm	2	2 6	2 6 10	2 6 10 5	2 6	2	
62Sm	2	2 6	2 6 10	2 6 10 6	2 6	2	
⁶³ Eu	2	2 6	2 6 10	2 6 10 7	2 6	2	
⁶⁴ Gd	2	2 6	2 6 10	2 6 10 7	2 6 1	2	
⁶⁵ Tb	2	2 6	2 6 10	2 6 10 9	2 6	2	
⁶⁶ Dy	2	2 6	2 6 10	2 6 10 10	2 6	2	
⁶⁷ Ho ⁶⁸ Er	2	2 6 2 6	2 6 10 2 6 10	2 6 10 11 2 6 10 12	2 6 2 6	2	
⁶⁹ Tm	2 2	2 6 2 6	2 6 10 2 6 10	2 6 10 12	2 6 2 6	2 2	
⁷⁰ Yb	$\frac{2}{2}$	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 13	2 6	2 2	
71Lu	$\frac{2}{2}$	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 1	$\frac{2}{2}$	
⁷² Hf	$\frac{2}{2}$	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	$\begin{bmatrix} 2 & 6 & 1 \\ 2 & 6 & 2 \end{bmatrix}$	2	
⁷³ Ta	$\frac{2}{2}$	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 3	2 2	
74W	$\frac{2}{2}$	$\begin{bmatrix} 2 & 0 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 4	2	
75Re	$\frac{2}{2}$	$\begin{bmatrix} 2 & 0 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 5	2	
⁷⁶ Os	2	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 6	2	
77Ir	2	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 7	2	
⁷⁸ Pt	2	$\begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix}$	2 6 10	2 6 10 14	2 6 9	1	
⁷⁹ Au	2	2 6	2 6 10	2 6 10 14	2 6 10	1	
⁸⁰ Hg	2	2 6	2 6 10	2 6 10 14	2 6 10	2	
		<u> </u>	1 - 0 10	1	l 1v	_	

1	2	3		4	5	6	7	8
⁸¹ Tl	2	2 6	2	6 10	2 6 10 14	2 6 10	2 1	
⁸² Pb	2	2 6	2	6 10	2 6 10 14	2 6 10	2 2	
⁸³ Bi	2	2 6	2	6 10	2 6 10 14	2 6 10	2 3	
⁸⁴ Po	2	2 6	2	6 10	2 6 10 14	2 6 10	2 4	
85At	2	2 6	2	6 10	2 6 10 14	2 6 10	2 5	
⁸⁶ Rn	2	2 6	2	6 10	2 6 10 14	2 6 10	2 6	
⁸⁷ Fr	2	2 6	2	6 10	2 6 10 14	2 6 10	2 6	1
88Ra	2	2 6	2	6 10	2 6 10 14	2 6 10	2 6	2
89Ac	2	2 6	2	6 10	2 6 10 14	2 6 10	2 6 1	2
⁹⁰ Th	2	2 6	2	6 10	2 6 10 14	2 6 10	2 6 2	2
⁹¹ Pa	2	2 6	2	6 10	2 6 10 14	2 6 10 (2)	2 6 3(1)	2
⁹² U	2	2 6	2	6 10	2 6 10 14	2 6 10 (3)	2 6 4(1)	2
⁹³ Np	2	2 6	2	6 10	2 6 10 14	2 6 10 4	2 6 1	2
⁹⁴ Pu	2	2 6	2	6 10	2 6 10 14	2 6 10 6(5)	2 6 (1)	2
⁹⁵ Am	2	2 6	2	6 10	2 6 10 14	2 6 10 7	2 6	2
96Cm	2	2 6	2	6 10	2 6 10 14	2 6 10 7	2 6 1	2
$^{97}\mathrm{Bk}$	2	2 6	2	6 10	2 6 10 14	2 6 10 9(8)	2 6 (1)	2
98Cf	2	2 6	2	6 10	2 6 10 14	2 6 10 10(9)	2 6 (1)	2
⁹⁹ Es	2	2 6	2	6 10	2 6 10 14	2 6 10 11(10)	2 6 (1)	2
¹⁰⁰ Fm	2	2 6	2	6 10	2 6 10 14	2 6 10 12(11)	2 6 (1)	2
¹⁰¹ Md	2	2 6	2	6 10	2 6 10 14	2 6 10 13(12)	2 6 (1)	2
¹⁰² No	2	2 6	2	6 10	2 6 10 14	2 6 10 14	2 6	2
^{103}Lw	2	2 6	2	6 10	2 6 10 14	2 6 10 14	2 6 1	2
¹⁰⁴ Ku	2	2 6	2	6 10	2 6 10 14	2 6 10 14	2 6 2	2
¹⁰⁵ Ha	2	2 6	2	6 10	2 6 10 14	2 6 10 14	2 6 3	2

Mase atomice

Simbol chimic	Nr. de masă	Masă atomică	Simbol chimic	Nr. de masă	Masă atomică	Simbol chimic	Nr. de masă	Masă atomică
n	1	1,008665		24	23,990967		59	58,933189
H	1	1,007825	Mg	23	22,994135		60	59,933806
	2	2,014102	8	24	23,985044	Cu	63	62,929594
	3	3,016049		25	24,985840		65	64,927786
Не	3	3,016030		26	25,982591	Zn	65	64,929234
	4	4,002604		27	26,984345	Br	82	81,916802
Li	6	6,015126	Al	26	25,986900	Sr	88	87,905640
	7	7,016005		27	26,981535		89	88,907430
Be	7	7,016931		28	27,981908		90	89,907770
	8	8,005308	Si	28	27,976927	Y	90	89,907180
	9	9,012186		29	28,976491	Ag	107	106,906970
	10	10,013535		30	29,973761	I	127	126,904350
В	10	10,012939		31	30,975349		128	127,905820
	11	11,009305	P	30	29,978320	Au	198	197,968240
C	11	11,011431		31	30,973763	Tl	204	203,973890
	12	12		32	31,973908	Pb	206	205,97446
	13	13,003354	S	32	31,972074		207	206,97589
	14	14,003242		33	32,971460		208	207,97664
N	13	13,005739		34	33,967864	Bi	209	208,98042
	14	14,003074		35	34,969034		210	209,98411
	15	15,000108	Cl	35	34,968854	Po	210	209,98287
О	15	15,003072		36	35,968312	Rn	222	222,01753
	16	15,994915		37	36,965896		226	226,02536
	17	16,999133	Ar	36	35,967548	Th	232	232,03821
	18	17,999160		37	36,966772		233	233,04143
F	18	18,000950		39	38,964321	U	234	234,04090
	19	18,998405		40	39,962384		235	235,04393
	20	19,999985						
Ne	20	19,992440	K	39	38,963714		236	236,04573
	21	20,993849		42	41,962417		238	238,05076
	22	21,991384	Cr	51	50,944786		239	239,05432
Na	22	21,994435	Mn	55	54,938054	Pu	238	238,04952
	23	22,989773	Co	58	57,935754		239	239,05216

Proprietățile particulelor elementare

		Nr. de				Energie
	Denumirea	sarcină	Număr	Număr de	Spin	de repaus
	(simbol)	electrică	barionic	stranietate		$m_0^2 c^2$
		Q	B	S	S	(MeV)
	Foton	0	0	0	1	0
	(γ)					
F	Pion	+1	0	0	0	139,6
Į	(π)	0	0	0	0	135
MEZONI	Kaon	+1	0	+1	0	194
	(K)	0	0	+1	0	198
	Electron					
Z	(e)	-1	0	0	1/2	0,511
LEPTONI	Miuon					
\mathbf{P}	(μ)	-1	0	0	1/2	105,6
\Box	Neutrino					
	(v)	0	0	0	1/2	≠ 0
Z	Proton					
BARIONI	<i>(p)</i>	+1	+1	0	1/2	938,3
AR	Neutron					
<u> </u>	(n)	0	+1	0	1/2	939,6
	Lambda					
	(Λ)	0	+1	-1	1/2	1115,6
	Sigma					
Z	(Σ)	+1	+1	-1	1/2	1189
Q		0	+1	-1	1/2	1192
EK.		-1	+1	-1	1/2	1197
HIPERONI	Xi	0			1 /0	1017
<u> </u>	(Ξ)	0	+1	-2	1/2	1315
		-1	+1	-2	1/2	1321
	Omega	1	. 1	2	2/2	1670
	(Ω)	-1	+1	-3	3/2	1672

(câteva particule mai reprezentative)

Timp mediu de viață	Mod de dezint.	Antiparticula corespunzătoare	N		cuantice articulei	ale
(s)	(s) ·		Q	В	S	S
∞	-	γ (coincide cu particula)	0	0	0	1
2,6 · 10-8	$\pi^+ \rightarrow \mu^+ + \nu$	π^-	-1	0	0	0
$0.8 \cdot 10^{-16}$	$\pi^0 \! o \gamma + \gamma$	π^0 (coincide cu	0	0	0	0
$1,2 \cdot 10^{-8}$	$K^+ \rightarrow \mu^+ + \nu$	<i>K</i> ⁻ part.)	-1	0	-1	0
$0,9 \cdot 10^{-10}$	$K^0 \! o \pi^{\scriptscriptstyle +} + \pi^{\scriptscriptstyle -}$	K^0	0	0	-1	0
∞	-	e ⁺ (pozitron)	+1	0	0	1/2
$2,2 \cdot 10^{-6}$	$\mu^- \rightarrow e^- + \nu + \nabla$	$\mu^{\scriptscriptstyle +}$	+1	0	0	1/2
∞	_	$\tilde{\mathbf{v}}$	0	0	0	1/2
∞	-	\widetilde{p}	-1	-1	0	1/2
917	$n \rightarrow p + e^- + \nabla$	\widetilde{n}	0	-1	0	1/2
2,6· 10 ⁻¹⁰	$\Lambda \to p + n^-$	$\widetilde{\Lambda}$	0	-1	+1	1/2
$0.8 \cdot 10^{-10}$ $5.8 \cdot 10^{-20}$ $1.5 \cdot 10^{-10}$	$\begin{array}{c} \Sigma^{+} \longrightarrow p + \pi^{0} \\ \Sigma^{0} \longrightarrow \Lambda + \gamma \\ \Sigma^{-} \longrightarrow n + \pi^{-} \end{array}$	$egin{array}{c} \widetilde{\Sigma}^- \ \widetilde{\Sigma}^0 \ \widetilde{\Sigma}^+ \end{array}$	-1 0 +1	-1 -1 -1	+1 +1 +1	1/2 1/2 1/2
$2,9 \cdot 10^{-10} \\ 1,6 \cdot 10^{-10}$	$\Xi \to \Lambda + \pi^0$ $\Xi^- \to \Lambda + \pi^-$	Ξ ⁰ Ξ ⁺	0 +1	-1 -1	+2 +2	1/2 1/2
0,8 · 10 ⁻¹⁰	$\Omega \rightarrow \Lambda + K^- + K$	$\widetilde{\Omega}^+$	+1	-1	+3	3/2

CONSTANTE ATOMICE UZUALE*

Sarcina electronului

Masa de repaus a electronului

Sarcina specifică a electronului (valoare absolută)

Masa de repaus a protonului

Masa de repaus a neutronului

Raportul dintre masa protonului și a electronului

Viteza luminii în vid

Numărul lui Avogadro

Constanta lui Planck

Constanta lui Faraday

Constanta lui Boltzmann

Constanta gazelor

Constanta lui Rydberg

Factori de transformare

Prima rază Bohr

Ångströmul

Permitivitatea vidului

Permeabilitatea vidului

 $m_a = 9,10938 \cdot 10^{-31} \text{ kg}$ $e/m_a = 1,758819 \cdot 10^{11} \text{ C} \cdot \text{kg}^{-1}$ $m_n = 1,67262 \cdot 10^{-27} \text{ kg}$ $m_n = 1,67492 \cdot 10^{-27} \text{ kg}$ $m_n/m_n = 1836,1527$ $c = 2,99792458 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$

 $q_a = -1,6021733 \cdot 10^{-19} \text{ C}$

 $N_A = 6.02136 \cdot 10^{23} \text{ mol}^{-1}$

 $h = 6.626075 \cdot 10^{-34} \text{ J} \cdot \text{s}$

 $F = 9,64853 \cdot 10^4 \text{ C} \cdot \text{mol}^{-1}$

 $k = 1.38065 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$

 $R = 8.31434 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 $R_{..} = 1,097373 \cdot 10^7 \text{ m}^{-1}$

 $1 \text{ eV} = 1.60210 \cdot 10^{-19} \text{ J}$

 $1 \text{ u} = 1,66054 \cdot 10^{-27} \text{ kg}$

 $1 \text{ u}c^2 = 931,194 \text{ MeV}$

 $r_1 = 5,2973 \cdot 10^{-11} \text{ m}$

 $1 \text{ Å} = 10^{-10} \text{ m}$

 $\varepsilon_0 = 8.8548 \cdot 10^{-12} \text{ F} \cdot \text{m}^{-1}$

 $\mu_0 = 4\pi \cdot 10^{-7} \text{ H} \cdot \text{m}^{-1}$

Prezentare biografică a unor fizicieni laureați ai Premiului Nobel, menționați în manual

Prezentarea se face în maniera dicționarului de personalități *Who's Who*, adică data și locul nașterii/decesului, naționalitatea, educația laureatului. Opera, descoperirile efectiv premiate sunt date, în general, prin extrase selectate din lecțiile Nobel ținute de laureați și/sau din prezentările lor cu ocazia ceremoniei premierii. Limbajul folosit este cât mai larg accesibil.

De câte ori a fost posibil au fost menționate și atribuțiile fizicienilor români, folosindu-se indicativul Ro. O sursă importantă de informare în alcătuirea descrierii activității științifice a acestor iluștri fizicieni a fost lucrarea "Premiile Nobel pentru Fizică (1901–1998)" publicată de academicianul Ioan-Ioviț Popescu și regretatul Profesor Ion Dima, Editura Academiei Române, București 1998.

Röntgen, Wilhelm Conrad

Nobel 1901 "Ca apreciere pentru serviciile extraordinare oferite prin descoperirea remarcabilelor **raze**, numite subsecvent după acesta"

N: 27 martie 1845, Lennep, Germania; copilăria și adolescența la Apeldoorn, Olanda. D: 10 februarie 1923, München, Germania; înmormântat la Alter Friedhof din Giessen, Germania. Nat: germană. Rel: protestantă luterană. Inginer în construcții de mașini (1868), doctor în fizică la Univ. Zürich cu teza Studien über Gase (1869). Educ: Univ. Strasbourg, examen de docență și docent universitar (1872–75); Car: Univ. Strasbourg, profesor (1976–79); Univ. Giessen, profesor (1879–88); Univ. Würzburg, profesor (1888–1900) și rector (1894); Univ. München, profesor (1900–23). Opera: Descoperirea razelor X (Würzburg, 8 noiembrie 1895), denumite ulterior raze Röntgen. Descoperirea razelor X a deschis drumul fizicii moderne și radiologiei. Ro: Este remarcabil faptul că, încă în ianuarie 1896, imediat după prima comunicare a lui Röntgen (Würzburg, decembrie 1895), fizicianul român Dragomir Hurmuzescu a început la Sorbona o serie de cercetări privind proprietățile razelor X. La sfârșitul lui ianuarie 1896, D. Hurmuzescu și colegul său L. Benoist au descoperit proprietatea razelor X de a descărca corpurile electrizate. Tot în 1896, un alt fizician român, Dimitrie Bungețianu, a comunicat radiografii.

Röntgen a fost condus la descoperirea sa norocoasă cu ocazia cercetărilor sale privind fenomenele care au loc la trecerea curentului electric prin gaze rarefiate. Cercetări anterioare în acest domeniu mai fuseseră efectuate de W. Hittorf (1824–1914), C. F. Varley (1828–1883), Sir William Crookes (1832–1919), H. Hertz (1857–1894) și P. von Lenard (1862–1947), cu deosebire asupra razelor catodice, denumite astfel de către E. Goldstein, raze care provocau fluorescența pereților de sticlă ai tuburilor de descărcare în gaze la presiune foarte joasă și tensiune foarte înaltă, generată cu ajutorul bobinei de inducție inventată de H. D. Ruhmkorff. Mulți fizicieni făceau experiențe cu razele catodice produse cu tuburi Crookes. În particular, Röntgen urmărea prezența în razele catodice (considerate atunci de școala germană a fi unde de eter) a unei radiații invizibile de înaltă frecvență prezisă de Helmholtz din teoria electromagnetică a lui Maxwell. În după-amiaza zilei de vineri 8 noiembrie 1895, el a constatat prezența unui nou fel de radiație, foarte penetrantă, care cauza fluorescența

unei plăci acoperite cu platinocianură de bariu plasată până la câțiva metri de tubul de descărcare, deși acesta din urmă fusese în prealabil înfășurat într-o foaie de carton negru, complet opac pentru radiația vizibilă și ultravioletă. Ulterior constată că aceste radiații impresionează și placa fotografică și că diversele obiecte interpuse între tubul de descărcare și placa fotografică manifestă transparentă, însă în grade diferite. Are chiar inspirația să plaseze în fața plăcii fotografice mâna soției și obține astfel prima röntgenogramă din lume a unei portiuni dintr-un corp uman viu. Röntgen stabilește de asemenea faptul că razele se produc la impactul razelor catodice cu pereții tubului de descărcare sau cu orice alt corp și că, spre deosebire de razele catodice, nu sunt deflectate de câmpul magnetic. El a dedus de aici că fluorescența observată este cauzată de un nou tip de raze, pe care el le-a numit raze X, adică raze de natură necunoscută. Toate aceste rezultate privind descoperirea sa au fost comunicate de Röntgen în fața Societății Fizico-Medicale din Würzburg la 28 decembrie 1895. În martie 1896 comunică despre influența razelor X asupra descărcării corpurilor electrizate. El a descris aproape toate proprietătile razelor X cunoscute acum, inclusiv faptul că nu produceau efecte de reflexie, refracție sau interferență în aparatele optice obișnuite (fapte explicate ulterior prin natura lor electromagnetică ondulatorie de lungime de undă extrem de mică). Este interesant de amintit că foarte aproape de descoperirea razelor X au fost marii fizicieni ca Heinrich Hertz sau Philipp Lenard; fizicianul englez Frederick Smith a observat chiar că plăcile fotografice, deși aflate în cutii, se voalau dacă erau puse în apropierea unui tub Crookes, astfel că el a spus asistentului său să țină cutiile cu plăci fotografice în alt loc. Descoperirea lui Röntgen a stimulat o avalanșe de cercetări și descoperiri care au deschis calea fizicii moderne și a aplicațiilor ei în chimie, biologie și medicină. Amintim numai câteva momente din aceste dezvoltări: descoperirea radioactivității naturale (H. Becquerel, 1896); efectul fotoelectric produs de razele X (P. Curie, G. Sagnac, 1900); teoria cuantei de lumină (A. Einstein, 1905), polarizarea razelor X și natura lor ondulatorie transversală (C. G. Barkla, 1905); radiația X caracteristică (C. G. Barkla, C. A. Sadler, 1909); teoria radiației de frânare (A. Sommerfeld, 1990); interferența la reflexia razelor X pe cristale (M. von Laue, W. Friedrich, P. Knipping, 1912); natura și teoria ondulatorie electromagnetică a razelor X (A. Sommerfeld, M. von Laue, 1912); realizarea tuburilor de raze X cu vid și emisie termoelectronică (J. E. Lilienfeld, W. D. Coolidge, 1912-13); difracția razelor X pe cristale și măsurători absolute ale lungimii lor de undă și ale constantelor retelelor cristaline (W. H. Bragg, W. L. Bragg, 1913); descoperirea seriilor de linii spectrale K și L ale elementelor (H. G. J. Moseley, 1913); teoria atomului a lui N. Bohr (1913); analiza structurală prin metoda pulberii cristaline (P. Debye, P. Scherrer, A. W. Hull, 1915-17); descoperirea seriilor de linii spectrale M și N (M. Siegbahn, 1920–21); teoria spectrelor discrete de raze X (W. Kossel, A. Sommerfeld, 1916–1921); teoria lui N. Bohr a sistemului periodic al elementelor (1921); descoperirea efectului Compton (A. H. Compton, 1922), ipoteza cuantei de radiație X (A. H. Compton, P. Debye, 1923) și experiența Bothe-Geiger (1925); aplicații ale razelor X în genetică (H. J. Müller, 1927) și diagnostică medicală (A. C. Moniz Egas, 1927; W. G. Forßmann, 1929); acceleratorul circular (R. Wideröe, D. Kerst, et al., 1928), betatronul (R. Wideröe, J. Slepian, D. Kerst, K. Gund, M. Steenbeck, 1942); descoperirea (D. Ivanenko, I. Pomeranchuk, 1944) și teoria (J. Schwinger, 1949) radiației sincrotron; cercetări structurale ale moleculelor mari (Kathleen Lonsdale, 1929), structura insulinei (Dorothy Crowfoot-Hodgkin, 1935), structura hemoglobinei (M. Perutz, 1937) și a mioglobinei (J. Kendrew, 1937), structura DNA (F. Crick, Rosalind Franklin, J. D. Watson, M. H. Wilkins, 1951). Aproape toate realizările amintite au fost onorate cu Premiul Nobel pentru Fizică, Chimie sau Medicină, dintre cele mai recente fiind Premiul

Nobel pentru Medicină în 1979 pentru dezvoltarea tomografiei asistată de calculator (A. M. Cormack și G. N. Housfield) și Premiul Nobel pentru Chimie în 1985 (H. Hauptman și J. Karle) și în 1988 (J. Deisenhofer, R. Huber și H. Michel) pentru cercetări structurale. De fapt, nici o descoperire din fizică nu a condus la atât de multe premii ca aceea a razelor X și a aplicațiilor lor.

Lorentz, Hendrik Antoon

Nobel 1902 (împreună cu P. Zeeman) "Ca apreciere pentru serviciul extraordinar oferit prin studiile lor în influența magnetismului asupra fenomenului radiației" (Teoria electronilor și efectul Zeeman)

N: 18 iulie 1853, Arnhem, Olanda. D: 4 februarie 1928, Haarlem, Olanda. Fam: cea mai mare dintre cele două fete ale lui Lorentz, Dr. Geertruida Luberta Lorentz, a fost fiziciană și s-a căsătorit cu profesorul W. J. de Haas, directorul Laboratorului Criogenic Kamerlingh Onnes al universității din Leiden. Nat: olandeză. Rel: creștină protestantă. Educ: Univ. Leiden, B. Sc. (1871), Ph. D. (1875). Car: Univ. Leiden, profesor (1878–1923); Laboratorul Teyler, Haarlem, Director (1912–23). *Opera:* Teoria electronică și prezicerea efectului Zeeman (1895). În teza sa de doctorat Over de theorie der tarugkaasting en der breking van het licht (1875), considerată ulterior ca o piatră de hotar în evoluția teoriilor fizice, se ocupă de reflexia și refracția luminii, propunându-și o extindere a teoriei electricității și luminii a lui Maxwell. În 1878 publică lucrarea în care stabilește relația dintre viteza luminii și densitatea și compoziția mediului (la aceeași relație ajunge, în mod independent, și fizicianul L. Lorenz din Copenhaga, astfel că aceasta a rămas cu numele de relația Lorenz-Lorentz). De numele lui Lorentz este legată concepția și teoria electronică a materiei și a propagării undelor electromagnetice și, în particular, a luminii prin mediile transparente. De asemenea, în domeniul electrolizei si al conductiei metalice Lorentz accentuează natura corpusculară a electricitătii folosindu-se de noțiunea de *electron*, introdusă în 1891 de Johnstone Stoney¹. Pe baza unei concepții atomice sui generis, Lorentz consideră că emisia de lumină a corpurilor se datorează vibrațiilor particulelor încărcate iar această emisie poate fi influențată de câmpul magnetic (1895). Elevul său Zeeman va duce mai departe această idee și va ajunge curând la descoperirea efectului Zeeman (1896). Prin teoria electronică a substanței (The Theory of Electrons, 1905), Lorentz stabilește puntea dintre teoria electromagnetică clasică a lui Maxwell și teoria cuantică veche, ce urma să fie elaborată de Planck, Einstein, Bohr și Sommerfeld. Urmând ipoteza lui Fresnel cu privire la existența eterului, Lorentz elaborează o teorie generală a fenomenelor electrice și optice pentru corpurile în mișcare (Théorie électromagnetique de Maxwell et son aplication aux corps mouvants, 1892; Versuch einer Theorie der elecktrischen und optischen Erscheinungen in bewegten Körpern, 1895). În 1904 publică relațiile de transformare care îi poartă numele, reintegrate apoi în teoria relativității a lui Einstein, relații care permit să se prevadă contracția corpurilor pe direcția mișcării. Acest efect, descoperit în mod independent de către Fitzgerald, a rămas cunoscut sub numele de contracția Lorentz-Fitzgerald. Lorentz s-a mai dedicat problemelor de gravitație, termodinamică, teorie cinetică și radiație.

¹ Denumirea de "fotoni" a fost introdusă în anul 1926 de G. N. Lewis, fiind sugerată de termenii electron și proton, introdus de E. Rutherford în anul 1920.

Curie, Marie (Sklodowska, Maria)

Nobel Fizica 1903 (împreună cu soțul său, Pierre Curie) "Ca apreciere pentru serviciile extraordinare oferite prin studiile asupra fenomenului radiației descoperit de profesorul Henri Becquerel" *(Radioactivitatea)*

Nobel Chimie 1911 pentru "Radiu și Poloniu"

N: 7 noiembrie 1867, Varșovia, Polonia. D: 4 iulie 1934, Sancellemoz, Haute Savoie, Franța (după o scurtă suferință, moare de leucemie, cauzată de supraexpunere la substanțe radioactive); prin decret prezidențial, François Mitterand autorizează transferul rămășițelor pământești ale soților Marie și Pierre Curie în Panthéon (1995). Fam: În 1894 îl întâlnește pe Pierre Curie (1859-1906), cu care se căsătorește la 26 iulie 1895. Soții Curie au avut două fete, Irčne, căsătorită cu Frédéric Joliot (ambii laureați ai Premiului Nobel pentru Chimie în anul 1935 pentru descoperirea radioactivității artificiale), și Eve, căsătorită cu diplomatul american H. R. Labouisse (laureat al Premiului Nobel pentru Pace pe anul 1965). Eve este autoarea celebrei biografii a mamei sale, Madame Curie (Gallimard, Paris, 1939). Nat: poloneză, ulterior cetățenie franceză. Rel: de bază catolică, anticlericală. Educ: Univ. Sorbone, Paris, L. Sc. Phys. (1893), L. Sc. Math. (1894), D. Sc. (1903). *Car*: guvernantă (1885–1891); École Normale Supérieure (pentru fete), Sčvres, profesor (din 1900); Univ. Sorbonne, Paris, profesor (1906–1934), succesoare pe postul soțului său, prima femeie profesor titular la Sorbona; director pe viață (1914–1934) la Institute de Radium al Universității din Paris (fondat în 1914). Opera: Descoperirea elementelor radiu și poloniu (1898) și separarea radiului metalic pur (1910). Începând cu teza sa de licență Recherches sur Ies substances radioactives (1893), Marie Curie a devenit celebră prin cercetările sale de radioactivitate. Numele unității Curie (cantitatea de radon în echilibru radioactiv cu 1 gram de radiu) a fost dat în onoarea soților Curie. A studiat și măsurat radiația emisă de uraniu și a demonstrat că radioactivitatea compusilor de uraniu este proportională cu cantitatea de uraniu pe care aceștia o conțin; a demonstrat că elementul greu toriu este radioactiv (1898); împreună cu Pierre Curie a descoperit și separat poloniul din pechblendă; a detectat ca impuritate în pechblendă o substanță și mai radioactivă, pe care ei au denumit-o radiu (1898). Împreună cu Pierre Curie a mai demonstrat că razele β poartă sarcină negativă și a cercetat radioactivitatea indusă. În 1902, folosind câteva tone de pechblendă, soții Curie au reușit să separe 0,1 grame de clorură de radiu. Abia în 1910 Marie Curie, împreună cu Debierne, va reuși să separe 1 gram de radiu metalic pur, ceea ce îi aduce al doilea Premiu Nobel, de această dată pentru chimie (1911). Marie Curie a mai întreprins importante cercetări de pionierat de radioactivitate aplicată în medicină. Timp de câteva decenii a fost singurul om de știință laureat de două ori cu Premiul Nobel. Marie Curie (1903) și Maria Goeppert Mayer (1963) sunt singurele două femei onorate cu Premiul Nobel pentru Fizică din cele 161 de premii acordate până în prezent (2002) în acest domeniu. În Franța, Marie Curie a fost aleasă membru al Academiei de Medicină (1922), dar nu și al Academiei de Științe (unde nominalizarea sa din 1911 a fost respinsă din cauza unui singur vot contra pe motiv de sex!). Ro: În cercetările care i-au condus la descoperirea radioactivității naturale a uraniului (1896) și la descoperirea radiului și poloniului (1898), Henry Becquerel și soții Marie și Pierre Curie au folosit electroscopul construit de Dragomir Hurmuzescu (1894), electrospcop care îi poartă numele, cu înveliş metalic și dop izolator de dielectrină.

Vasile Bianu, după un stagiu (1910–14) în laboratorul Mariei Curie, și-a susținut doctoratul în domeniul radioactivității la Universitatea din București (1919). În același domeniu, Ștefania Mărăcineanu a obținut titlul de doctor la Universitatea din Paris (1924). În 1925,

Marie Curie îl invită pe Alexandru Proca să lucreze la celebrul său Institute de Radium. Cu prilejul vizitei unui român, Marie Curie îi declara: "Sunt fericită să cunosc un compatriot și un prieten al domnului Proca, fiindcă pot să transmit acestui prieten cât de mulțumită sunt de aportul domnului Proca la institutul nostru. ... De fiecare dată când am o problemă științifică dificilă, care necesită multă răbdare, competență, abilitate experimentală și meticulozitate, mă adresez domnului Proca. Iar el, de fiecare dată, răspunde cu soluții care îmi convin, mă satisfac, și întotdeauna furnizează rezultate precise. Voi românii puteți fi mândri de a avea un cercetător știintific de valoarea domnului Proca".

Michelson, Albert Abraham

Nobel 1907 "Pentru instrumentele sale de precizie optică și investigațiile spectroscopice și metrologice purtate cu ajutorul acestora" (*Interferometrul Michelson*)

N: 19 decembrie 1852, Lemberg (Strelno), Prusia, Germania. D: 9 mai 1931, Pasadena, California, SUA. *Dam:* Familia sa emigrează în U.S.A. (1854). *Nat:* germană, ulterior cetățenie americană. *Rel*: mozaică. *Educ*: San Francisco, High School (1869); U.S. Naval Academy, Maryland, bacalaureat (1873). Car: U.S. Naval Academy, Maryland, profesor (1875–79); Univ. Berlin (cu Helmholtz), Univ. Heidelberg (cu Quicke), Collège de France și École Polytechnique din Paris (cu Lippmann ți Cornu), studii postuniversitare (1879–82); Case School of Applied Science, Cleveland, Ohio, profesor (1883-89); Univ. Clark, Worcester, Massachusetts, profesor (1889–93); Univ. Chicago, Ilinois, profesor (1893–1929); se retrage pentru a lucra la Mount Wilson Observatory, Pasadena (din 1929). Opera: Interferometrul lui Michelson și experiența Michelson-Morley (1887). Încă de la începutul carierei sale științifice l-a preocupat lumina și, în particular, viteza luminii. Modificând metoda lui Foucault, în 1879 Michelson obține pentru viteza luminii valoarea 299.850 km/s, iar în 1882 valoarea 299.860 km/s; măsurătoarea sa de maximă acuratețe, efectuată în 1926 între două vârfuri de munte din California, distanțate la 22 de mile, a dat valoarea 299.796 km/s (valoarea actuală este de 299.792,458 km/s). Considerând că există un mediu de propagare a luminii, numit eter, și că viteza undelor în eter se compune cu cea a sursei după regulile mecanicii clasice, Michelson elaborează în 1880 metoda care să permită determinarea vitezei Pământului față de eter. Ideea constă în următoarele: măsurând diferența de drum în lungul mişcării pământului și perpendicular pe această direcție, se poate măsura viteza relativă a Pământului față de eter. Experiența a fost efectuată în Europa, mai întâi la Berlin, apoi la Potsdam, dar rezultatul a fost negativ. În 1887 Michelson și E. W. Morley, au repetat cu deosebită acuratețe această experiență. Dacă ar fi existat eterul în jurul Pământului iar acest eter, datorită miscării Pământului, ar fi influentat propagarea luminii, atunci aranjamentul experimental folosit de Michelson ar fi trebuit să permită punerea în evidență a deplasării franjelor cu o fracțiune ușor măsurabilă dintr-o interfranjă. Dar această deplasare nu a fost pusă în evidență. Interpretarea rezultatului experienței Michelson-Morley a putut fi dată abia o dată cu elaborarea teoriei relativității de către Einstein, când s-a renunțat la conceptul de eter. În afară de interferometrul lui Michelson, de numele său sunt legate și alte importante realizări, cum sunt spectrograful cu rețea etalon (1970), rețele optice de difracție de înaltă calitate, măsurarea metrului în lungimi de undă ale radiației cadmiului (1895), prima măsurătoare (1920) a unui diametru stelar (Alfa Orion), spectroscopie astrofizica ș.a. Selectăm lucrările clasice Velocity of Light (1902), Light Waves and Their Uses, (1903) și Studies in Optics (1927), toate editate de Univ. of Chicago Press, Chicago.

Einstein, Albert

Nobel 1921 "Pentru serviciul oferit Fizicii teoretice și în special pentru descoperirea legii efectului fotoelectric" (Efectul fotoelectric)

N: 14 martie 1879, Ulm an der Donau, Württemberg, Bavaria, Germania. D: 18 aprilie 1955, Princenton, New Jersey, SUA. Nat: germană, ulterior cetățenie elvețiană (1901), germană (1914) și apoi americană (1904). Rel: mozaică. Educ: Eidgenössiche Technische Hochschule (Institutul Politehnic Federal), Zürich (1895–1900); Univ. Zürich, Ph. D. (1905). Car: Biroul Elvețian de Patente, Berna, expert tehnic (1902-08); Univ. Zürich, profesor (1909–11); Univ. Praga, profesor (1911–12); Eidgenössische Technische Hoschschule, Zürich, profesor (1912-14); Univ. Berlin, profesor, şi Institutul Kaiser Wilhelm, Berlin, director (1914–33). Venirea la putere a fascismului în Germania îl obligă, în toamna anului 1933, să emigreze în Statele Unite ale Americii, unde este numit profesor pe viață la Institute for Advanced Study de la Univ. Princeton, New Jersey (1933-1955). După cel de-al doilea război mondial Einstein a fost o personalitate proeminentă în The World Government Movement, a colaborat cu Dr. Chain Weizmann la fondarea Universității din Ierusalim, dar a declinat postul oferit de Președinte al Statului Israel. Opera: Deceniul lui Einstein (1905-1915), cei mai fructuoși ani din viața lui Einstein, considerat cel mai ilustru fizician al timpului său. În general, trebuie să constatăm că sunt puține idei în fizica contemporană care să nu fi crescut, de fapt, din operele sale. În anul 1905, în Annalen der Physik, el publică trei lucrări, fiecare constituind în domeniul său un moment de răscruce în dezvoltarea fizicii. Una din lucrări se referă la efectul fotoelectric, a doua la mișcarea browniană, iar a treia la teoria specială a relativității. Lucrarea privind efectul fotoelectric avea să fie una din motivațiile acordării Premiului Nobel (1921). Descoperirea legii efectului fotoelectric prin aplicarea teoriei cuantice a luminii și verificarea riguroasă a relației lui Einstein de experiențele lui Millikan (1914) aveau să constituie o strălucită confirmare a ipotezei cuantei de lumină elaborată de Planck. Din acest moment lumina putea fi tratată și în termeni de corpusculi, în sensul lui Newton, dar și ca unde electromagnetice, cum cerea teoria lui Maxwell. Cum se va dovedi ulterior, lumina prezenta o proprietate nouă, aceea a dualismului undă-corpuscul. Lucrarea referitoare la teoria specială a relativității ia în considerare mișcarea corpurilor în sisteme de referință care se mișcă unul față de altul rectiliniu și uniform. Această lucrare a apărut după ce în experiențele lui Michelson și Morley se obținuse un rezultat negativ referitor la viteza absolută a corpurilor (în particular a Pământului) în raport cu eterul și după ce acest rezultat nu a putut fi explicat în încercările teoretice ale lui Fitzgerald și apoi ale lui Lorentz. Acesta din urmă obținuse transformările care îi poartă numele și care, inclusiv în domeniul electrodinamicii, înlocuiau transformările lui Galilei, valabile doar în domeniul mecanicii newtoniene pentru viteze relative mici. Einstein nu cunoștea rezultatele lui Lorentz când a publicat, în 1905, lucrarea sa Despre electrodinamica corpurilor în mișcare. Spre deosebire de Lorentz, care acorda un rol important eterului, Einstein renunță la acest concept și formulează, în schimb, două postulate. Primul postulează valabilitatea generală a ecuațiilor lui Maxwell în toate sistemele inerțiale de referință (postulatul relativității), iar al doilea postulează constanta vitezei c a luminii în vid pentru orice sistem inerțial de referință (postulatul luminii). Pe baza lor, Einstein a dat o explicație firească a insuccesului experiențelor lui Michelson și Morley. Unul din rezultatele cele mai remarcabile îl constituie însă celebra relație a lui Einstein $E = mc^2$ dintre masa m și energia totală E a corpurilor, care demonstrează că cele două mărimi fundamentale din fizică sunt de aceeași natură. În anul 1916 Einstein publică lucrarea în care fundamentează teoria generală

a relativității. Dacă în lucrarea din 1905, referitoare la teoria relativității restrânse, el a considerat sistemele care se află în mișcare uniformă neaccelerată, de astă dată el consideră problema generală a mișcării sistemelor accelerate. Folosind continuul spațio-temporal al lui Minkowski și rezultatele matematicienilor Ricci și Levi-Civita, Einstein elaborează o nouă teorie a gravitației, mult mai generală decât teoria clasică newtoniană. Pe această bază, el a explicat deplasarea cunoscută a periheliului planetei Mercur, dar a prevăzut și noi conexiuni fizice, cum este devierea razelor de lumină care traversează un câmp gravitațional intens. Această previziune a fost confirmată prin observațiile făcute în timpul eclipsei totale de Soare din 29 mai 1919. În anul 1917, Einstein a publicat în *Physikalische Zeitschrift* memoriul său intitulat Cu privire la teoria cuantică a radiației, în care a dedus legea radiației termice a lui Planck pe baza coeficientilor de probabilitate pentru emisie si absorbtie (coeficienții lui Einstein). În această lucrare el fundamentează teoria cuantică a interacției radiației electromagnetice cu substanța și introduce pentru prima dată conceptul de emisie stimulată, stabilind astfel principiul laserului cu 40 de ani mai înainte ca un prim astfel de dispozitiv să fie realizat și în practică. Einstein a adus contribuții importante și în alte domenii ale fizicii, cum a fost teoria cinetică a mișcării browniene a suspensiilor, produsă prin ciocnirile moleculare (1905) si strălucit confirmată experimental de Jean Perrin (1908), prilej cu care a fost determinată o foarte bună valoare a numărului lui Avogadro. De numele lui Einstein este legată și prima teorie cuantică a căldurii specifice a corpului solid, cu ajutorul căreia a explicat scăderea căldurii specifice cu scăderea temperaturii. Cel mai mult l-a preocupat pe Einstein, până la sfârșitul vieții, elaborarea unei teorii unitare a câmpului. Moștenirea lăsată de el în această direcție este dezvoltată astăzi în cadrul teoriilor în care se urmărește unificarea celor patru tipuri de interacții cunoscute în fizică (gravitațională, electromagnetică, slabă și tare). Einstein era convins de existența în Natură a unei armonii și simplități fundamentale. Totul despre natura cuantelor – la care, în ultimă analiză, atomii si particulele elementare apartin de asemenea – el ar fi vrut să deducă dintr-o fizică a continuului, în spiritul geometrizant al teoriei sale generale a relativității. Marea majoritate a fizicienilor contemporani au continuat să considere țelul lui Einstein de nerealizat, preferând să rămână cu dualismul undă-corpuscul, pe care el însuși l-a dezvăluit cu claritate cel dintâi. "Doresc să aduc argumente care mă rețin de la alinierea la opinia a aproape tuturor fizicienilor teoreticieni contemporani – răspunde Einstein. Eu sunt, de fapt, ferm convins că trăsătura esential statistică a teoriei cuantice contemporane trebuie atribuită numai faptului că aceasta operează cu o descriere incompletă a sistemelor fizice. Mai presus de toate, cititorul să fie convins că eu recunosc în întregime progresul foarte important pe care teoria cuantică statistică l-a adus fizicii teoretice. ...Această teorie este până acum singura care unește caracterul dual corpuscular și ondulatoriu al materiei într-un mod satisfăcător din punct de vedere logic; iar relațiile (verificabile) pe care le conține sunt, în limitele naturale fixate de relatiile de incertitudine, complete. Relațiile formale care sunt date de această teorie, adică întregul ei formalism matematic, va trebui să fie conținut, în forma deducțiilor legice, în orice teorie viitoare utilă. Ceea ce nu mă satisface în această teorie, din punct de vedere principal, este atitudinea ei față de ceea ce îmi pare a fi țelul programatic al întregii fizici: descrierea completă a oricărei situații reale (individuale) așa cum există ea, indiferent de orice act de observare sau verificare". Opera lui Albert Einstein a schimbat fundamental gândirea contemporană și constituie baza fizicii moderne. Deși, începând din 1910, Einstein a fost nominalizat pentru Premiul Nobel în fiecare an (cu excepția lui 1911 și 1919), îi aduc lui Einstein o faimă mondială, iar numele său devine sinonim cu teoria relativității, acest premiu i-a fost decernat, în 1921, în special pentru descoperirea legii efectului fotoelectric (1905).

Indicații și răspunsuri

Capitolul 1. Test recapitulativ: A, B, E, A, D, C, A, A, A, E. Capitolul 2.

2.1./2.2.

1. a)
$$\frac{hc}{\lambda} = L_e + \frac{m_e v_{\text{max}}^2}{2} \rightarrow v_{\text{max}} = \sqrt{\frac{2}{m_e} \left(\frac{hc}{\lambda} - L_e\right)} = 8,36 \cdot 10^5 \text{ m/s};$$

b)
$$\frac{m_e v_{\text{max}}^2}{2} = e U_f \rightarrow U_f = \frac{m_e v_{\text{max}}^2}{2e} = 1,987 \text{ V} \approx 2 \text{ V};$$

c)
$$\frac{hc}{\lambda_0} = \frac{hc}{\lambda} - eU_f \rightarrow \lambda_0 = \frac{hc}{\frac{hc}{\lambda} - eU_f} = 2,95 \cdot 10^{-7} \text{ m}.$$

2.
$$hv = hv_0 + eU_f \rightarrow v = v_0 + \frac{eU_f}{h} = 20.78 \cdot 10^{14} \text{ s}^{-1}.$$

- 3. Din definiția interfranjei (distanța dintre două maxime sau două minime de interferență) $i=\frac{\lambda D}{l} \rightarrow \lambda = \frac{li}{D} = 10^{-6}/3 = 333$ nm. Din ecuația lui Einstein $h v = e U_f + h v_0$ rezultă $U_f = \frac{h}{e} \left(\frac{c}{\lambda} v_0 \right) = 1,6 \text{ V}$.
 - **4.** $L_e = h v_0 \rightarrow v_0 = \frac{L_e}{h} = 4,58 \cdot 10^{14} \text{ Hz.}$

5. a)
$$\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + E_c \rightarrow Ec = \frac{hc}{\lambda \lambda_0} (\lambda_0 - \lambda) = 0.147 \text{ eV}; L_e = \frac{hc}{\lambda_0} = 3.3 \cdot 10^{-19} \text{ J};$$

b)
$$I = \frac{Ne}{t} \rightarrow \frac{N}{t} = \frac{I}{e} = 3 \cdot 10^{13}$$
 electroni/s.

6.
$$\frac{hc}{\lambda} = L_e + E_{cM} \rightarrow E_{cM} = \frac{hc}{\lambda} - L_e = 0.28 \cdot 10^{-19} \text{ J};$$

$$E_{cM} = eU_f \to U_f = \frac{E_{cM}}{e} = 0.175 \text{ V}.$$

7.
$$\frac{hv_1 = L_e + eU_{f1}}{hv_2 = L_e + eU_{f2}}$$
 $\Rightarrow hv_1 - hv_2 = eU_{f1} - eU_{f2} \rightarrow h = \frac{e(U_{f1} - U_{f2})}{v_1 - v_2} = 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}.$

8.
$$\frac{hc}{\lambda} = L_e + eU_f$$
 și $\frac{hc}{\lambda - \Delta\lambda} = L_e + e(U_f + \Delta U)$ prin scăderea celor două relații,

rezultă:
$$e = \frac{hc\Delta\lambda}{\lambda\Delta U(\lambda - \Delta\lambda)} \approx 1.6 \cdot 10^{-19} \text{ C}.$$

9.
$$\frac{Nhv}{V} = \frac{Nhc}{V\lambda} = 10^{-15} \rightarrow \frac{N}{V} = \frac{10^{-15}\lambda}{hc} = 2.5 \cdot 10^3 \text{ J/m}^3.$$

10.
$$N = \frac{\Phi}{hv}S = \frac{\Phi \frac{\pi D^2}{4}\lambda}{hc} = 1,16 \cdot 10^6 \text{ fotoni/s}.$$

- 11. Din formula $\frac{nc}{\lambda}$ se calculează energiile radiațiilor incidente pe cele patru elemente. Cea mai mare energie corespunde radiației ultraviolete $(7,07 \cdot 10^{-19} \text{ J})$ care este mai mare decât lucrul mecanic de extracție a elementelor K, Cr, Zn. Energia cea mai mică corespunde radiației roșii $(2,8 \cdot 10^{-19} \text{ J})$ care este mai mică decât lucrul mecanic de extracție a elementelor menționate, prin urmare niciunul nu va emite fotoelectroni. Energia corespunzătoare radiației albastre este de $4,95 \cdot 10^{-19} \text{ J}$ și în acest caz emite doar elementul K.
 - 13. Din formula 2.16 se poate scrie

$$E_c = hv_0 \frac{2\Lambda \sin^2 \frac{\theta}{2}}{\frac{hc}{E_f} + 2\Lambda \sin^2 \frac{\theta}{2}} = 0,0155 \cdot 10^{-15} \text{ J} = 96,9 \text{ eV}.$$

- **14.** $\Delta \lambda = \Lambda (1 \cos \theta) = 2{,}423 \cdot 10^{-12} \text{ m}.$
- 2.3./2.4.
- 1. Înlocuim datele în formula 2.23 $\lambda_B = \frac{12,23 \cdot 10^{-10}}{\sqrt{U}} = 1,22 \cdot 10^{-10} \text{ m};$

$$E = \frac{hc}{\lambda_B} = 16.2 \cdot 10^{-16} \text{ J}; p = \frac{h}{\lambda_B} = 5.41 \cdot 10^{-24} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}.$$

2.
$$\lambda_B = \frac{h}{\sqrt{2em_e U}} = 70 \text{ nm.}$$
 3. $\lambda_{Be} = \frac{h}{\sqrt{2m_e e U}} = \frac{6.6 \cdot 10^{-34}}{\sqrt{2 \cdot 9.1 \cdot 10^{-31} \cdot 1.6 \cdot 10^{-17}}} = 1,22 \text{ Å};$

$$\lambda_{BH} = \frac{h}{\sqrt{2m_{H}eU}} = \frac{6.6 \cdot 10^{-34}}{\sqrt{2 \cdot 1.673 \cdot 10^{-27} \cdot 1.6 \cdot 10^{-17}}} = 2.85 \cdot 10^{-12} = 0.0285 \text{ Å}.$$

4.
$$m_e c^2 = eU \rightarrow \lambda_B = \frac{h}{\sqrt{2m_p \cdot m_e c^2}} = \frac{h}{c\sqrt{2m_p \cdot m_e}} \approx 4 \cdot 10^{-4} \text{ Å}.$$

5.
$$v = \sqrt{\frac{2eU}{m}}$$
; $\lambda_B = \frac{h}{\sqrt{2m_eU}} \rightarrow v = \frac{h}{\lambda_B m}$; $v_e = 7252$ km/s;

$$v_n = \frac{h}{\lambda_B m_n} = \frac{6.6 \cdot 10^{-34}}{10^{-10} \cdot 1.675 \cdot 10^{-27}} = 3.94 \text{ km/s}; \frac{m_e v_e^2}{2} = 149 \text{ eV}; \frac{m_n v_n^2}{2} = 0.081 \text{ eV}.$$

Capitolul 3

1.
$$r_1 m_e v = \frac{h}{2\pi} \rightarrow v = \frac{h}{2\pi m_e r_1} = 2.2 \cdot 10^6 \text{ m/s.}$$
 2. $F_c = m_e a \rightarrow a = \frac{F_c}{m_e} = 9 \cdot 10^{22} \text{ m/s}^2.$

3.
$$E_n = \frac{E_1}{n^2} \rightarrow n^2 = \frac{E_1}{E_n} = 16$$
; $n = 4$. **4.** $E_p = 2E_t \rightarrow \frac{1}{2}Rhc = \frac{2Rhc}{n^2} \rightarrow n^2 = 4$; $n = 2$.

5.
$$r_n = r_1 n^2$$
; $n^2 = \frac{r_n}{r_1} = 4$; $n = 2$. 6. $L_1 = \frac{h}{2\pi}$; $L_5 = \frac{5h}{2\pi} \rightarrow L_5 = 5L_1$. 7. $E_{ion} = -E_t = \frac{Rhc}{n^2}$
 $= 5, 4 \cdot 10^{-19} \text{ J. }$ 8. $E_m - E_n = hv$; $E_m = E_n + \frac{hc}{\lambda} = -5, 42 \cdot 10^{-19} \text{ J}$; $E_n = \frac{E_1}{n^2} \rightarrow n^2 = \frac{E_1}{E_n}$; $n = 3$; $E_m = \frac{E_1}{m^2} \rightarrow m^2 = \frac{E_1}{E_m}$; $m = 2$. 9. $N = \frac{(n-1)n}{2} = 45 \text{ linii. }$ 10. $v_B = \frac{Rc}{4}$; $v_P = \frac{Rc}{9}$ $\rightarrow v_B/v_P = \frac{9}{4}$. 11. $\lambda_{\min} = \frac{hc}{eU} = 0,1241 \text{ nm. }$ 12. $\lambda_{K\alpha} - \lambda_{\min} = 0,84 \cdot 10^{-10} \text{ m} \rightarrow \lambda_{K\alpha} = 1,67 \cdot 10^{-10} \text{ m}$; $\frac{1}{\lambda_{K\alpha}} = R(Z - 1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right)$.

Capitolul 4

1. Din legea lui Ohm $I = \frac{U}{R}$ și relația $E = \frac{U}{I}$, rezultă: $I = \frac{S_0}{\rho}E$. De unde:

$$F = eE = e \frac{4\rho I}{\pi d^2} = 3.1 \cdot 10^{-20} \text{ N}.$$

- **7.** a) Din relația (4.4) rezultă I = 406.9 mA; (b) $T = \frac{eU_T}{L} = 16.7$ °C.
- 9. a) $u = U \sin \omega t$, unde U = 20 V este tensiunea maximă.

$$R_d = \frac{U}{I_d} = \frac{20}{2} = 10 \ \Omega; \ R_i = \frac{U}{I_i} = \frac{-20}{-0.02} = 10^3 \ \Omega.$$

Pentru
$$t \in [nT, (1 + 1/2)T], u_R = \frac{u}{R_L + R}R = \frac{20 \cdot 10}{10 + 10} \sin \omega t = 10 \sin \omega t,$$

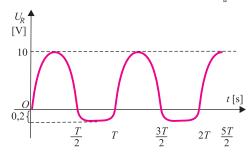
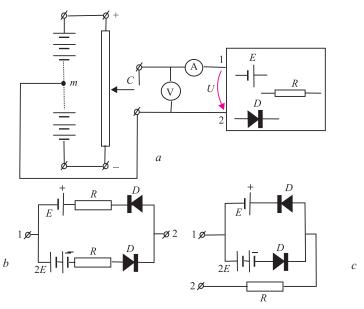



Fig. P.9.

- n = 0, 1, 2, ...Pentru $t \in [(n + 1/2)T, (n + 1)T],$ $u_R = \frac{u}{R_i + R} R = \frac{20 \cdot 10}{10^3 + 10} \text{sin}\omega t \approx Q \cdot 0.2 \text{sin}\omega t;$ ($\omega = 314 \text{ rad/s}$). b) În fig. 9 se reprezintă $u_R = f(t)$.
- 10. a) Completarea schemei pentru alimentarea în tensiune continuă U a montajului din cutie este realizată corespunzător figurii 10, a, b, c, unde m reprezintă priza

mediană pentru divizorul de tensiune.

- b) Variantele rețelei din cutie ("black-box"), compatibile cu caracteristica curenttensiune sunt date în fig. b și c, unde $R = \operatorname{ctg}\alpha = 20 \,\mathrm{V}$ și $E = 2 \,\mathrm{V}$ (rezistența internă a acumulatoarelor se neglijează).
- 11. a) Tensiunea alternativă între punctele A și B ale circuitului este reprezentată prin sinusoida trasată cu linie continuă în fig. 11, a. Dioda se va deschide dacă tensiunea directă la bornele ei este de 8 V. Tensiunea la bornele diodei este reprezentată în fig. 11, a cu linie punctată, iar tensiunea $U_{\scriptscriptstyle R}$ la bornele rezistorului R în fig. 11, b. Valoarea maximă a tensiunii U_R este 12 V.

Fig. p.10. *a, b, c.*

b) Dacă tensiunea între punctele A și C variază sinusoidal cu timpul, $U_{AC}=220\sin\frac{2\pi}{T}t$ (linia întreruptă din fig. 11, a), atunci tensiunea U_{AB} are expresia: $U_{AB}=220\sin\frac{2\pi}{T}t-200$. Dioda se deschide pentru $U_{AB}\geq 8$ V. Adică pentru: $220\sin\frac{2\pi}{T}t-200\geq 8$. Rezultă că dioda este deschisă pentru intervalul:

$$\frac{1}{2\pi}\arcsin\frac{20,8}{22}\,\leq\,\frac{t}{T}\,\leq\,\frac{1}{2}\,-\,\frac{1}{2\pi}\arcsin\frac{20,8}{22}\,,\;\mathrm{adic\check{a}}\;\mathrm{\hat{n}}$$

intervalul de timp: $\Delta t = T \left(\frac{1}{2} - \frac{1}{\pi} \arcsin \frac{20,8}{22} \right)$. Cum $\arcsin(20,8/22) \approx 71^\circ = 1,24$ rad, rezultă: $\Delta t = 2,1 \cdot 10^{-3} \text{ s} = 2,1 \text{ ms.}$

12. După închiderea întrerupătorului în circuit apare un curent a cărui intensitate scade treptat. După cum

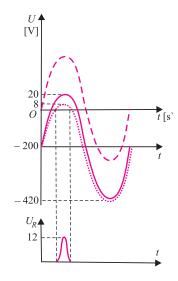


Fig. P.11.

rezultă din caracteristica curent-tensiune, tensiunea U_0 este aceeași la bornele diodei pentru orice valoare a intensității curentului. Când tensiunea la bornele condensatorului devine: $U_C = E - U_0$ condensatorul este încărcat iar intensitatea curentului de încărcare este nulă. Sarcina transportată de curent în procesul de încărcare este $q = CU_C = C(E - U_0)$. Conform legii conservării energiei, lucrul produs de sursă pentru transportul purtătorilor de sarcină prin circuit este: $L = L_D + L_R + W_C$; L = Eq, lucrul efectuat de sursa de curent continuu; $L_D = qU_0$, lucrul efectuat pentru transportul sarcinii prin diodă;

$$W_C = \frac{1}{2} q U_c = \frac{1}{2} q (E - U_0)$$
 este energia condensatorului încărcat. L_R este lucrul efectuat

pentru transportul electronilor de conducție prin rezistorul R, regăsit în întregime în căldura Q disipată în rezistor;

$$L_R = Q \text{ sau } Q = Eq - U_0 q - \frac{1}{2} q(E - U_0) = \frac{1}{2} C(E - U_0)^2; \ Q = 4.8 \text{ mJ}.$$

Capitolul 5

5.2.

1.
$$E_{le\sigma} = c^2 [Zm_H + (A - Z)m_n - m_A] = 1,76 \text{ MeV}.$$

2.
$$\frac{E_{leg}}{A} = \frac{931.5}{235} (92 \cdot 1,007299 + 143 \cdot 1,008690 - 35,04393) - 7,4 \text{ MeV}.$$

3.
$$R = R_0 A_{Al}^{1/3} = 1,5 R_0 A_x^{1/3} \rightarrow A_x = \frac{8}{27} A_{Al} = 8; \quad \frac{E_{leg\ x}}{A_x} = \frac{E_{leg\ Al}}{A_{Al}}; \quad E_{leg\ x} = A_x \frac{E_{leg\ Al}}{A_{Al}};$$

 $E_{leg x} = 64 \text{ MeV}.$

4.
$$m_N = m_{1_{00}} - Zm_e = 15,9949 - 8 \cdot 5,6067 \cdot 10^{-4} = 15,9904 \ u.$$

5.3.

1.
$$238 - 206 = 32$$
; $32 : 4 = 8a$; $92 - 82 = 10$; $82 - 10 = 6\beta$.

2.
$$N_{dez} = N_0 (1 - e^{-\lambda t}) \approx N_0 \lambda t = 1.6 \cdot 10^{17}$$
 nuclee.

3.
$$\Lambda = N\lambda = \frac{mN_A}{A} \frac{\ln 2}{T_{1/2}}$$
; $m = \frac{\Lambda A T_{1/2}}{N_A \ln 2} = 8.9 \cdot 10^{-10} \text{ kg.}$

4.
$$Q = C\Delta t = N_{dez}E_{c\alpha} \approx N_0\lambda\tau E_{c\alpha} = \Lambda_0\tau E_{c\alpha} \rightarrow \Delta t = \frac{\Lambda_0\tau E_{c\alpha}}{C} = 13.5^{\circ}\text{C}.$$

5.
$$\lambda = \frac{\ln 2}{T_{1/2}} = 4.88 \cdot 10^{-18} \text{ s}^{-1}$$
. 6. $\lambda = \frac{\Lambda}{N} = \frac{\Lambda}{\frac{mN_A}{\Lambda}} = 4.3 \cdot 10^{-17} \text{ s}^{-1}$.

7. $\Lambda_0/m = 48 \text{ imp/min} \cdot \text{kg}$; $\Lambda/m = 3 \text{ imp/min} \cdot \text{kg}$;

$$\Lambda = \Lambda_0 e^{-\lambda t}$$
; $3 = 48e^{-\lambda t} \rightarrow \ln 3 = \ln 48 - \lambda t$; $\lambda t = 4 \ln 2$; $\frac{\ln 2}{T_{1/2}} t = 4 \ln 2 \rightarrow$

$$\rightarrow t = 4T_{1/2} = 84$$
 ani; 1979 - 84 = 1895; $v = \frac{h}{t} = \frac{840}{84} = 10$ cm/an.

8. Din problema rezolvată 2 rezultă: Q=8,89 MeV și $E_{c\alpha}=8,72$ MeV. $Q=E_{c\alpha}+E_{c\text{Pb}}\to E_{c\text{Pb}}=Q-E_{c\alpha}=0,17\cdot 10^6$ eV.

$$\frac{m_{\rm Pb}v_{\rm Pb}^2}{2} = E_{\rm cPb} \rightarrow v_{\rm Pb} = \sqrt{\frac{2E_{\rm cPb}}{m_{\rm rec}}} = 3.96 \cdot 10^5 \text{ m/s}.$$

10.
$$_{12}^{24}\text{Mg} + _{2}^{4}x \rightarrow _{1}^{1}p + _{13}^{27}\text{Al}; Q = (m_{\text{Mg}} + m_{x} - m_{p} - m_{\text{Al}})c^{2} = 1,779 \cdot 10^{-13} \text{ J}.$$

11.
$$Q = NQ_1 = \frac{mN_A}{A}Q_1 = 4,245 \cdot 10^{14} \text{ J.}$$

5.4.

1.
$$\frac{4.2 \cdot 10^6}{20} = 2.1 \cdot 10^5$$
;

2.
$$I = I_0 e^{-\mu x} \rightarrow \frac{I_0}{8} = I_0 e^{-\mu x} \rightarrow x = \frac{3\ln 2}{\mu} = 1,79 \text{ cm}.$$

3.
$$\frac{I_0}{8} = I_0 e^{-\mu x}$$
 și $x_{1/2} = \frac{\ln 2}{\mu} \rightarrow 3 \ln 2 = \frac{\ln 2}{x_{1/2}} x \rightarrow x = 3x_{1/2}$.

4.
$$\rho_{\rm Pb} X_{\rm Pb} = \rho_{\rm bet} X_{\rm bet} \to X_{\rm bet} = \frac{\rho_{\rm Pb}}{\rho_{\rm bet}} X_{\rm Pb} = 0.5 \text{ m}.$$

5. 1 Sv = f_T · 1 Gy; sievertul este doza echivalentă pentru țesutul iradiat cu radiații având factorul f_T = 1, atunci când doza absorbită de acel țesut este egală cu 1 gray.

Bibliografie

- [1] Physics, H. C. Ohanian; W. W. Norton & Company, New-York London, 1985.
- [2] An Introduction to Astronomy, Th. T. Army; Ed. Mosby (USA), 1996.
- [3] Advanced Level Physics, M. Nelkon, P. Parker; H. E. B. London, 1989.
- [4] Fizica, clasa XII-a, D. Ciobotaru, Şt. Levai, T. Angelescu, I. Munteanu, M. Melnic, M. Gall; Ed. Did. Ped., Bucureşti, 2000.
 - [5] Optica, M. Giurgea, L. Nasta; Ed. Academiei Române, 1998.
- [6] Fizică generală, E. Luca, C. Ciobotariu, Gh. Zet, A. Păduraru; Ed. Did. Ped., București, 1981.
 - [7] Fizică generală, vol. II, Tr. Crețu; Ed. Tehnică, București, 1986.
 - [8] Particule elementare (vol. I), I. Lazanu, A. Mihul; Ed. Univ., București, 2001.
 - [9] Fizica generală (vol. II, III), R. Țițeica, I. Popescu; Ed. Tehnică, București, 1990.
 - [10] Elemente de fizică nucleară (II), G. Vlăducă; Ed. Univ., București, 1981.
- [11] Optică, Fizica plasmei, Fizica atomică și nucleară pentru perfecționarea profesorilor; Ed. Did. Ped., București, 1983.
 - [12] Note de curs mecanică, V. Dima, Fac. Fizică, București, 2001.
- [13] Premiile Nobel pentru fizică 1901–1998, Ioan-Ioviț Popescu, Ion Dima, Ed. Academiei Române, București, 1998.
 - [14] Universul într-o coajă de nucă, Stephen Hawking; Ed. Humanitas, 2004.
- [15] Electronică fizică și aplicații; N.N. Gherbanovschi, O.S. Stoican; Ed. Academiei Române, București, 1994.

Cuprins

1. Teoria relativității restrânse	3.2.2. Modelul planetar al atomului5	2
1.1. Bazele experimentale ale teoriei relativității	3.3. Modelul Bohr	4
restrânse 4	3.3.1. Cuantificarea distanțelor electronului	
1.1.1. Relativitatea clasică	față de nucleu (r_n) , a vitezelor lui	
1.1.2. Experimentul Michelson și Morley 6	pe orbita circulară (v_n) , a	
1.2. Postulatele teoriei relativității restrânse.	impulsului (p_n) și a energiei	
Transformările Lorentz9	totale (E_n)	6
1.3. Elemente de cinematică și dinamică	3.3.2. Seriile spectrale ale hidrogenului și	
relativistă12	ale atomilor hidrogenoizi5	
1.3.1. Cinematica relativistă. Consecințele	3.4. Experimentul Franck-Hertz 6	2
cinematice ale transformărilor	3.5. Atomul cu mai mulți electroni* 6	3
Lorentz12	3.6. Radiațiile X 6	6
1.3.2. Compunerea vitezelor	3.7. Efectul LASER*6	8
1.3.3. Principiul fundamental al dinamicii 17		
1.3.4. Relația masă-energie	4. Semiconductoare. Aplicații în electronică	
2. Elemente de fizică cuantică	4.1. Conducția electrică în metale.	
2. Elemente de fizica cuantica	Semiconductoare intrinseci și extrinseci 7	6
2.1. Efectul fotoelectric extern	4.1.1. Semiconductoare intrinseci	19
2.1.1. Legile efectului fotoelectric extern 28	4.1.2. Semiconductoare extrinseci 8	0
2.1.2. Interpretarea legilor efectului	4.2. Dioda semiconductoare.	
fotoelectric extern30	Redresarea curentului alternativ	;2
2.1.3. Ipoteza lui Planck. Ipoteza lui	4.2.1. Joncțiunea <i>p-n</i> nepolarizată 8	12
Einstein. Ecuația lui Einstein31	4.2.2. Dioda semiconductoare.	
2.1.4. Aplicații ale dispozitivelor	Definiție și proprietăți electrice	
optoelectronice	generale 8	3
2.2. Efectul Compton*	4.2.3. Fenomene fizice în dioda	
2.3. Dualismul undă-corpuscul	semiconductoare în regim	
2.4. Ipoteza de Broglie. Difracția electronilor.	de conducție 8	8
Aplicații40	4.2.4. Redresarea curentului alternativ 9	0
	4.2.5. Redresorul monoalternanță	1
3. Fizică atomică	4.2.6. Redresorul dublă alternanță 9	13
3.1. Spectre	4.2.7. Redresoare cu multiplicare	
3.1.1. Spectroscopul cu prismă	de tensiune9	15
3.2. Experimentul Rutherford.	4.2.8. Stabilizator de tensiune	
Modelul planetar al atomului51	cu diodă Zener9	16
3.2.1. Experimentul Rutherford	4.3. Tranzistorul cu efect de câmp (TEC)* 9	19
•		

^{*} Teme destinate claselor cu 3 ore pe săptămână la disciplina Fizică.

4.3.1. Tranzistorul cu efect de câmp		5.4.3. D	etecția radiațiilor nucleare	14
cu joncțiuni (TEC-J)*	100		ozimetrie	
4.3.2. Tranzistoare cu efect de câmp (TI		5.4.5. Ir	adierea naturală și	
cu poartă izolată*			adierea artificială	14
4.3.3. Polarizarea pentru TEC	102	5.5. Fisiunea	nucleară. Reactorul nuclear	150
în montaj amplificator*	106	5.5.1. Fi	isiunea	150
4.3.4. Tranzistorul bipolar cu joncţiuni j		5.5.2. R	eacția în lanț. Masa critică	15
4.4. Circuite integrate*		5.5.3. R	eactorul nuclear	153
		5.6. Fuziunea	nucleară	158
5. Fizică nucleară		uziunea		
3. Fizica nucicara		5.6.2. R	eactorul cu fuziune	159
5.1. Proprietăți generale ale nucleului	118	5.7. Accelerat	oare de particule*	16
5.2. Energia de legătură a nucleului.			cceleratorul liniar cu electroni	
Stabilitatea nucleului	120		e accelerare (LINAC)*	
5.2.1. Forțe nucleare. Energia de legă	tură		tatronul*	
a nucleului			iclotronul*	
5.2.2. Stabilitatea nucleului	122		elementare*	
5.2.3. Modelarea structurii nucleului .			teracțiile fundamentale*	169
5.3. Radioactivitatea. Legile dezintegrării			aracteristicile comune ale	
radioactive	125		articulelor elementare*	
5.3.1. Radioactivitatea naturală			curt istoric*	
5.3.2. Legile dezintegrării radioactive			adiația cosmică*	
5.3.3. Reacții nucleare		5.8.5. R	adiația cosmică de fond*	17′
5.3.4. Legi de conservare în reacțiile	150	Anexe		
nucleare	122		periodic al elementelor	
5.4. Interacția radiației nucleare cu substan			țile particulelor elementare	
			e atomice uzuale	192
Detecția radiațiilor nucleare. Dozimetri	ie 13/		ea biografică a unor fizicieni	
5.4.1. Radiații formate din particule	127		i Premiului Nobel,	
încărcate electric			ți în manual	
5.4.2. Interacția radiațiilor formate din			íspunsuri	
particule neutre cu substanța	139	Bibliografie .		200

^{*} Teme destinate claselor cu 3 ore pe săptămână la disciplina Fizică.